
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

JFP, ?? pages, 2023. © Cambridge University Press 2023 1
doi:10.1017/xxxxx

Alice or Bob?: Process Polymorphism in
Choreographies

EVA GRAVERSEN
Department of Mathematics and Computer Science, University of Southern Denmark e-mail:

efgraversen@imada.sdu.dk

ANDREW K. HIRSCH
Department of Computer Science and Engineering, University at Buffalo, SUNY e-mail: akhirsch@buffalo.edu

FABRIZIO MONTESI
Department of Mathematics and Computer Science, University of Southern Denmark e-mail:

fmontesi@imada.sdu.dk

Abstract

We present PolyChorλ , a language for higher-order functional choreographic programming—an
emerging paradigm for concurrent programming. In choreographic programming, programmers
write the desired cooperative behaviour of a system of processes and then compile it into an imple-
mentation for each process, a translation called endpoint projection. Unlike its predecessor, Chorλ ,
PolyChorλ has both type and process polymorphism inspired by System Fω . That is, PolyChorλ
is the first (higher-order) functional choreographic language which gives programmers the ability
to write generic choreographies and determine the participants at runtime. This novel combination
of features also allows PolyChorλ processes to communicate distributed values, leading to a new
and intuitive way to write delegation. While some of the functional features of PolyChorλ give it a
weaker correspondence between the semantics of choreographies and their endpoint-projected con-
current systems than some other choreographic languages, we still get the hallmark end result of
choreographic programming: projected programs are deadlock-free by design.

Key Words: Choreographic Programming, Concurrency, λ -calculus, Type Systems,
Polymorphism

1 Introduction

Distributed systems involve interacting processes. Usually, programmers write one pro-
gram per process, and then compose those programs in parallel. These programs contain
send and receive expressions which transmit data between processes. Predicting how the
composition of programs based on this method is challenging, so it is easy to write code
that deadlocks, or gets stuck because patterns of sends and receives do not match. Session
types (Honda, 1993; Honda et al., 1998) can be used to describe the patterns of sends and
receives in a program, offering a foundation for static analyses aimed at preventing commu-
nication mismatches and deadlocks (Scalas and Yoshida, 2019; Caires and Pfenning, 2010;
Wadler, 2012; DeYoung et al., 2012; Honda et al., 2016; Dardha et al., 2012). Working with

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

2

session types enables the programmer to ensure the communications in their system follow
compatible send/receive patterns.

Alternatively, developers can use a choreographic language to program the interactions
that they wish to take place in the system directly from a global viewpoint (Montesi, 2023).
Choreographic programming (Montesi, 2013) is a programming paradigm based on this
idea with particularly well-explored foundations (Cruz-Filipe and Montesi, 2020; Montesi,
2023) and promising developments (see, e.g., Dalla Preda et al., 2017; Giallorenzo et al.,
2021; Carbone and Montesi, 2013; Cruz-Filipe et al., 2022; Hirsch and Garg, 2022;
Jongmans and van den Bos, 2022; López et al., 2016). In this paradigm a programmer
writes one program as a choreography, which is then compiled to a program for each pro-
cess that is guaranteed to be correct by construction. Unlike session types, which only allow
local code to be checked against them, choreographies compile to the local code itself. The
syntax of choreographic programming languages is typically inspired by security protocol
notation (Needham and Schroeder, 1978), where send and receive commands are written
together as part of atomic instructions for expressing communication. This has two key
advantages. First, it gives programmers the power to express the desired communication
flow among processes, but without the burden of manually coding send and receive actions.
Second, it ensures that there is no mismatch which can cause deadlock, a property that has
become known as deadlock-freedom by design (Carbone and Montesi, 2013).

To see the power of this, consider the (in)famous bookseller example—a recurring
example in the literature of choreographic programming and session types (Carbone and
Montesi, 2013; Honda et al., 2016; Montesi, 2023). Buyer wants to buy a book from
Seller. To this end, Buyer sends the title of the book—say, “The Importance of Being
Earnest”—to Seller, who then sends back the price. Buyer then can compare the price
with its budget and based on the result informs Seller that they want to buy the book if it is
within their budget, or informs them that they do not want to buy the book otherwise. We
can describe this via the following choreography:

let x = comBuyer,Seller (“The Importance of Being Earnest” @ Buyer)
in let y = comSeller,Buyer (price lookup x)

in if y < budget
then selectBuyer,Seller Buy (() @ Seller)
else selectBuyer,Seller Quit (() @ Seller)

(1.1)

In Listing (1.1), as in all choreographic programs, computation takes place among multiple
processes communicating via message passing. Values are located at processes; for exam-
ple, in the first line of the choreography, the title of the book is initially located at Buyer.
The function comP,Q communicates a value from the process P to the process Q. It takes
a local value at P and returns a local value at Q.1 Thus, x represents the string “The
Importance of Being Earnest” at the process Seller, while y represents the price at the
process Buyer. Finally, we check locally if the book’s price is in Buyer’s budget. Either
way, we use function select to send a label from Buyer to Seller representing Buyer’s
choice to either proceed with the purchase or not. Either way, the choreography returns the
dummy value () at Seller.

1 Formally, we require a type annotation on comP,Q (see Section 3). We elide this here for clarity.

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

3

While most of the early work on choreographies focused on simple lower-order imper-
ative programming like in the example above, recent work has shown how to develop
higher-order choreographic programming languages. These languages allow a program-
mer to write deadlock-free code using the usual abstractions of higher-order programming,
such as objects (Giallorenzo et al., 2020) and higher-order functions (Hirsch and Garg,
2022; Cruz-Filipe et al., 2022).

For instance, Listing (1.1) bakes in the title and the value of the book. However, we may
want to use this code whenever Buyer wants to buy any book, and let Buyer use any local
function to decide whether to buy the book at a price.

λ title : String @ Buyer.
λ buyAtPrice? : Int @ Buyer→∅ Bool @ Buyer.
let x = comBuyer,Seller title
in let y = comSeller,Buyer (price lookup x)

in if buyAtPrice? y
then selectBuyer,Seller Buy (() @ Seller)
else selectBuyer,Seller Quit (() @ Seller)

(1.2)

Note the type of the function buyAtPrice?: it takes as input not just an integer, but an
integer at Buyer; similarly, it returns a Boolean at Buyer. Moreover, the arrow is anno-
tated with a set of processes, which in this case is empty (∅). Other than those processes
named in the input and output types of the function, these are the only processes who may
participate in the computation of that function. Since that set is empty here, no other pro-
cess may participate in the function—i.e., buyAtPrice? is local to Buyer. (Sometimes we
wish for other processes to participate in the computation of a function, as we will see in
Example 3.)

However, not every function with an ∅ annotation is local. For instance, comP,Q is
a function compatible with type τ →∅ τ for any type τ . Despite the fact that comP,Q is
clearly not local, only P and Q are involved in the communication, leading to the ∅ annota-
tion. Similarly, just because the input and output of a function are at different locations does
not mean that the function involves communication: for instance, it might be a constant
function. The choreography λ x : Int @ P. 5 @ Q has the same type as a communication of
an integer from P to Q: Int @ P→∅ Int @ Q.

A programmer using a higher-order choreographic language, like a programmer using
any higher-order programming language, can write a program once and use it in a large
number of situations. For instance, by supplying different values of title and buyAtPrice?,
the choreography in Listing (1.2) can be used to buy several different titles and Buyer can
determine if they are willing to buy the book at the price using any method they desire.

While the move from first-order programming to higher-order programming is sig-
nificant, previous work on the theoretical foundations of higher-order choreographic
programming still did not account for other forms of abstraction (Hirsch and Garg, 2022;
Cruz-Filipe et al., 2022). In particular, they did not allow for polymorphism, where pro-
grams can abstract over types as well as data, allowing them to operate in many more
settings; nor did they allow for delegation, where one process can ask another process to
act in its stead.

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

4

These forms of abstraction are relatively standard: delegation is an important operation
in concurrent calculi, and polymorphism is vital to modern programming. In choreographic
programming, however, another form of abstraction becomes natural: abstraction over pro-
cesses. Current higher-order choreographic languages require that code mention concrete
process names. However, we often want to write more-generic code, allowing the same
code to run on many processes. For example, Listing (1.2) allows Buyer to decide whether
to buy a book from Seller using any local function buyAtPrice?. It would be more natural
to write Seller as a book-selling service which different clients could interact with in the
same way to buy a book.

In this paper, we tackle three new features for choreographic languages. Firstly, we
show that abstraction over processes is a type of polymorphism, which we refer to as
process polymorphism. Secondly, we extend Chorλ—a simply-typed functional chore-
ographic language—with polymorphism, including process polymorphism, and call this
new language PolyChorλ . Thirdly, we add the ability to communicate distributed values
such as functions. This gives us the ability to delegate (that is, to send code to another
process, which that process is then expected to run), giving a clean language to study all
three forms of abstraction.

Let us examine the bookseller service in our extended language:

Λ B :: Proc.
λ title : String @ B.

λ buyAtPrice? : Int @ B →∅ Bool @ B.
let x = comB,Seller title
in let y = comSeller,B (price lookup x)

in if buyAtPrice? y
then selectB,Seller Buy (() @ Seller)
else selectB,Seller Quit (() @ Seller)

(1.3)

This program allows a process named B to connect with Seller to buy a book. B then
provides a string title and a decision function buyAtPrice?. Thus, we no longer have to
write a separate function for every process which may want to buy a book from Seller.

While this addition may appear simple, it poses some unique theoretical challenges.
First, the goal of a choreographic language is to compile a global program to one local
program per process. However, since B does not represent any particular process, it is
unclear how to compile the polymorphic code above. We solve this problem via a simple
principle: each process knows its identity. With this principle in place, we can compile the
code to a conditional in each process: one option to run if they take the role of B, and the
other to run if they do not.

Notably, each process chooses dynamically which interpretation of the code to run. This
flexibility is important, since we may want to allow different processes to occupy B’s
place dynamically. For instance, we can imagine a situation where Buyer1 and Buyer2
work together to buy a particularly expensive book: perhaps they compare bank accounts,
and whoever has more money buys the book for them to share. This can be achieved in
our system with Listing 1.4, where seller service is the name of the choreography from

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

5

Listing 1.3:

λ title : String @ Buyer1.

let x = comBuyer1,Buyer2
bank balance1

in if x < bank balance2

then selectBuyer2,Buyer1 Me selectBuyer2,Seller Me(
seller service Buyer2 (comBuyer1,Buyer2

title)
(λ z. z < bank balance2)

)
else selectBuyer2,Buyer1 You selectBuyer2,Seller Them

(seller service Buyer1 title (λ z. z < bank balance1))
(1.4)

Here Buyer1 sends its bank balance, bank balance1 to Buyer2, who compares the
received value with its own balance, bank balance2. If Buyer2 has the larger balance,
then it informs Buyer1 and Seller that Buyer2 will be buying the book by means of the
label “Me”. Buyer1 then sends the book title to Buyer2, which allows Buyer2 and Seller
to initiate the seller service choreography using a buyAtPrice? function that checks
whether the price is less than Buyer2’s bank balance. If Buyer1 has the larger balance
then Buyer2 again informs Buyer1 and Seller of who will be performing the role of
buyer for the rest of the protocol, “You” and “Them” respectively. Then Buyer1 enters
the seller service choreography with similar input to the first case, except the title and
buyAtPrice? are now located at Buyer1.

A related challenge shows up in the operational semantics of our extended language.
Languages like PolyChorλ generally have operational semantics which match the seman-
tics of the compiled code by allowing out-of-order execution: redices in different processes
might be reduced in any order. However, care must be taken with process polymorphism,
since it may not be clear whether two redices are in the same or different processes.

In addition to type and process polymorphism, PolyChorλ is the first choreographic lan-
guage to allow the communication of distributed values: values not located entirely at the
sender. These values include full choreographies described by distributed functions, which
can be used to model delegation. To see how process polymorphism and communication
of distributed values enables delegation, consider Figure 1. Here, when a buyer asks for a
book, the seller first checks whether it is in stock. If it is, the sale continues as normal. If
not, the seller delegates to a second seller, which may sell the book to the buyer.

In more detail, after ascertaining that the book is not in stock, Seller informs B and
Seller2 that the rest of the choreography will be executed by Seller2 in the place of Seller
using two selections with label “Delegate”. Then, Seller sends first the rest of the chore-
ography to Seller2, followed the title of the requested book. Seller2 uses its own lookup
function to execute the code in Listing 1.2. Both Seller2 and B need to be informed that the
delegation is happening, since B needs to know that it should interact with Seller2 rather
than Seller.

In general, delegation poses a challenge: the third-party processes involved in a com-
municated value (processes that are neither the sender nor the receiver, such as B above)
might need to change who they are going to interact with by swapping names (for instance,
swapping Seller2 and Seller above). As we will see, this challenge is relevant for both the

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

6

Λ B :: Proc.
λ title : String @ B.

λ buyAtPrice? : Int @ B →∅ Bool @ B.
let x = comB,Seller title
in if found(price lookup x)

then selectSeller,B Continue
selectSeller,Seller2 Disconnect
let y = comSeller,B (price(price lookup x))
in if buyAtPrice? y

then selectB,Seller Buy (() @ B)
else selectB,Seller Quit (() @ B)

else selectSeller,B Delegate
selectSeller,Seller2 Delegate

let F = comSeller,Seller2



λ title2 : String @ Seller.
if found(price lookup2 title2)

then selectSeller,B Continue
let y′ = price(price lookup2 title2)

in let y = comSeller,B y′

in if buyAtPrice? y
then selectB,Seller Buy (() @ B)
else selectB,Seller Quit (() @ B)

else selectSeller,B Quit (() @ B)


in let title2 = comSeller,Seller2

x
in F title2

(1.5)
Fig. 1. Example of Delegation

type system and projection operation of PolyChorλ . For typing, the combination of pro-
cess polymorphism and distributed value communication can make it difficult to statically
determine where data is located. For projection, we need to ensure that the third-party pro-
cesses involved in a communicated value perform the required changes to process names
in the right places during execution.

Structure of the Paper. We begin in Section 2 by examining the system model of
PolyChorλ . We then proceed with the following contributions:

• In Section 3, we describe the PolyChorλ language in detail. This language includes
both type polymorphism and process polymorphism. We develop both a type system
and kind system and an operational semantics for PolyChorλ .

• In Section 4, we describe the local network language used to describe the distributed
implementation. We also detail how to obtain this implementation via endpoint
projection, which compiles PolyChorλ programs to a program for each process.

• In Section 5, we describe the main theorem of this paper, the correctness of endpoint
projection with respect to our operational semantics. Because of the dynamic nature

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

7

of process polymorphism, this requires significant reasoning compared to previous
works on choreographies.

• In Section 6, we demonstrate how our theory can be used to model an extended
example where an edge computer can delegate tasks to an external server.

Finally, we discuss related work in Section 7 and conclude in Section 8.

2 System Model

We begin by discussing the assumptions we make about how PolyChorλ programs will be
run. These assumptions are as light as possible, allowing for PolyChorλ to be run in many
different scenarios. In particular, we assume that we have a fixed set of processes, which
can communicate via messages. These processes can each be described by a polymorphic
λ -calculus, similar to System Fω , but with the addition of communication primitives.

2.1 Processes

We assume that there is a fixed set N of process names P, Q, Alice, et cetera. These
processes can represent nodes in a distributed system, system processes, threads, or more.
Process polymorphism allows us to refer to processes using type variables, which may go
in or out of scope. Despite this, the set of physically-running processes remains the same.

We assume every process knows its identity. Thus, every process can choose what code
to run on the basis of its identity. This assumption is reasonable for many practical settings,
for instance it is common for nodes in distributed systems to know their identity. This
capability is essential to our strategy for enabling process polymorphism.

2.2 Communication

We assume that processes communicate via synchronous message passing. Thus, if P sends
a message to Q, then P does not continue until Q has received the message. Moreover, we
assume that message passing is instantaneous and certain, so messages do not get lost.

Processes can receive two kinds of messages: values of local programs (described below)
and labels describing choices made during a computation. These are used to ensure that
different processes stay in lock-step with each other.

2.3 Local Programs

We assume that processes run a local language described in Section 4. This is a functional
language extended with communication features, similar to the language GV (Gay and
Vasconcelos, 2010; Wadler, 2012; Lindley and Morris, 2015). Even more related to our
work is FST (System F with Session Types) Lindley and Morris (2017), an extension of
GV with polymorphism. As it does not have our communication of distributed values, they
can base their types on System F rather that System Fω .

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

8

Variables x, y, . . .
Type Variables X ,Y, . . .
Integers n
Labels ℓ

Process Names P
Process-Name Sets ρ ∈ 2Type Values

Kinds K ::= ∗ | K1 ⇒K2 | Proc | K \ ρ

Types τ ::= ν | τ1 τ2 | τ1 →ρ τ2

| τ1 + τ2 | τ1 × τ2 | ∀X :: K. τ | λX :: K. τ

Type Values ν ::= X | () @ ν | Int @ ν | ν1 →ρ ν2 | P
| ν1 + ν2 | ν1 × ν2 | ∀X :: K. ν | λX :: K. ν

Expressions M, N, . . . ::= x | () @ ν | n @ ν | λ x : τ.M | Λ X :: K.M
| M N | M τ | inlτ M | inrτ M
| case M of inl x ⇒ N1; inr y ⇒ N2

| (M,N) | fst M | snd M
| comτ

ν1,ν2
| selectν1,ν2 ℓ M | f

Values V ::= x | () @ ν | n @ ν | λ x : τ.M | Λ x :: K.M
| inlτ V | inrτ V | (V1,V2)

| comτ
ν1,ν2

Fig. 2. PolyChorλ Syntax

Endpoint projection translates PolyChorλ into this “Network Process” language. We
have thus further extended GV with features required for our endpoint-projection mech-
anism. For instance, in the local language described in Section 4 we provide an AmI
expression form, which allows a process to choose which code to run based on its iden-
tity. Despite these extensions, the language should feel familiar to any reader familiar with
polymorphic λ -calculi.

3 The Polymorphic Chorλ Language

We now turn to our first major contribution: the design of the polymorphic, chore-
ographic λ -calculus, PolyChorλ . This calculus extends the choreographic λ -calculus
Chorλ of Cruz-Filipe et al. (2022) with both type and, more importantly, process polymor-
phism. We begin by describing the features that PolyChorλ shares with the base Chorλ
before describing the new features. The syntax of PolyChorλ can be found in Figure 2.

Syntax Inherited from Chorλ . Since choreographic programs describe the behavior of
an entire communicating network of processes, we need to reason about where terms are
located. In other words, we need to know which processes store the data denoted by a term.
Terms of base type, like integers, are stored by exactly one process. This is represented in
our type system by matching base types with a process name. For example, integers stored
by the process Alice are represented by the type Int @ Alice. Values of this type also mark
the process which stores them, so a value 5 @ Alice (read “the integer 5 at Alice”) has

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

9

type Int @ Alice. In Figure 2, the only base types are () @ P and Int @ P, but it is easy to
extend the language with other base types, such as the types String @ P or Bool @ P used
in the introduction. We will continue to freely use other base types in our examples.

While base types are located on just one process, data of more-complex types may
involve multiple processes. For instance, the term (5 @ Alice,42 @ Bob) involves both
data stored by Alice and Bob. This is still recorded in the type: the term above has type
Int @ Alice× Int @ Bob. In addition to base types and product types, PolyChorλ also has
sum types (written τ1 + τ2), along with their normal introduction and elimination forms.
Note that products and coproducts in PolyChorλ may not represent a product or coproduct
at the local level, since each component may be at a different process. For instance, we can
represent distributed booleans as Bool @ Alice×Bool @ Bob+Bool @ Alice×Bool @
Bob. Matching on a value with this type will cause both Alice and Bob to make the same
choice.

Functions are treated more unusually: while we have standard λ and application forms,
we also allow functions to be defined mutually-recursively with each other. In order to do
so, any PolyChorλ choreography is associated with a list, D, of bindings of functions to
function variables f , which are also expressions. A function variable can then during exe-
cution be instantiated with its definition according to this list. As we will see in Section 3.3,
PolyChorλ terms are evaluated in a context which associates each function variable with
a term. Note that, while in the original Chorλ types were mutually recursive in a similar
way, in PolyChorλ we do not support recursive types. To see why, note that we syntacti-
cally restrict many types to type values. This prevents us having to reason about processes
denoted by arbitrary terms—e.g., we cannot send to the “process” (λX :: Proc.X) P but
we can write (ΛY :: Proc. comτ

Q,Y) ((λX :: Proc.X) P) which, due to our call-by-value
semantics, will force the type to reduce to P before Y gets instantiated. As we will see
in Section 4, allowing communication between arbitrary types would make endpoint pro-
jection difficult. However, since recursive types cannot necessarily reduce to a type value,
they cannot be used in many parts of the type system.

Function types are also more specific than their usual construction in λ -calculus: they
are written τ1 →ρ τ2. Here, ρ is a set of process names and type variables denoting addi-
tional participants in the function which do not have either the input or output. Thus,
if Alice wants to communicate an integer to Bob directly (without intermediaries), then
she should use a function of type Int @ Alice→∅ Int @ Bob. However, if she is will-
ing to use the process Proxy as an intermediary, then she should use a function of type
Int @ Alice→{Proxy} Int @ Bob. We will use ρ when projecting to determine that the
function in question and any uses thereof must be part of the local code of Proxy.

In order to allow values to be communicated between processes, we provide the primi-
tive communication function comτ

P,Q. This function takes a value of type τ at P and returns
the corresponding value at Q. As mentioned in the introduction, most choreographic lan-
guages provide a communication term modelled after the “Alice-and-Bob” notation of
cryptographic protocols. For instance, Alice ->Bob : 5 might represent Alice sending 5
to Bob. This is easily recovered by applying the function comτ

Alice,Bob. For example, the
term comInt@Alice

Alice,Bob (5 @ Alice) represents Alice sending a message containing 5 to Bob: it
evaluates to 5 @ Bob and has type Int @ Bob.

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

10

Finally, consider the following, where M has type Int @ Alice+ Int @ Alice:

case M of
inl x ⇒ 3 @ Bob;
inr y ⇒ 4 @ Bob

Clearly, Bob needs to know which branch is taken, since he needs to store a different
return value in each branch. However, only Alice knows which whether M evaluates to
inrInt@Alice V or inlInt@Alice V (here inl and inr are used to denote that a value is either
the right or left part of a sum and annotated with the type of the other part of the sum
to ensure type principality). Thus, this choreography cannot correspond to any network
program. Using the terminology found in the literature of choreographic languages, we
might say that the choreography is unrealisable because there is insufficient knowledge of
choice (Castagna et al., 2012; Montesi, 2023).

In order to enable programs where a process’s behaviour differs depending on other
processes data, such as how Bob behaved differently depending on Alice’s data, we pro-
vide select terms. These allow one process to tell another which branch has been taken,
preventing knowledge from “appearing out of nowhere.” For instance, we can extend the
program above to:

case M of
inl x ⇒ selectAlice,Bob Left (3 @ Bob);
inr y ⇒ selectAlice,Bob Right (4 @ Bob)

This represents the same program as above, except Alice tells Bob whether the left or the
right branch has been taken. Unlike the previous version of this example, it does represent a
(deadlock-free) network program. In general, we allow arbitrary labels to be sent by select
terms, so semantically-meaningful labels can be chosen.

While com and select both transfer information between two processes, they differ in
what information they transfer. com moves a value, e.g., as an integer or a function, from
the sender to the receiver. select on the other hand uses a label to inform the receiver of
a choice made by the sender. Some choreographic languages combine the two, so both a
label and a value is communicated at the same time, but like most choreographic languages
PolyChorλ keeps the two separate.

Syntax Additions over Chorλ . In order to achieve (both type and process) polymorphism
in PolyChorλ , we add several features based on System Fω (Girard, 1972). In particular,
we add kinds and universal types ∀X :: K. τ along with type abstraction and application.
From System Fω we inherit the kind ∗, which is the kind of types. We additionally inherit
the kind K1 ⇒K2 which represents functions from types to types.

Moreover, we inherit type-level functions λX :: K. τ from System Fω . These represent
the definition of type constructors. We also have type-level function application τ1 τ2.
Since types contain computation, we also define type values, which are simply types
without application.

We use type-level functions for two primary purposes. First, we can use it to denote types
which depend on process names, such as λX :: Proc. Int @ X and λX :: Proc⇒∗.X P.
Second, we use type level functions to type communications, as we will see in Section 3.1.

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

11

Note that the base types () @ ν and Int @ ν , like local values, are syntactically restricted
to only allow type values as subterms. This allows us to use a type variable to compute
the location of a value dynamically, but not arbitrary terms, which would make it much
harder to tell at time of projection where the value is located. Thus, we can write (λX ::
Proc. Int @ X) (Y P) to compute the location of an integer dynamically (Y P has to reduce
to a type value before X can be instantiated), but we cannot write Int @ (Y P) directly.
This way, our projected calculus can tell when instantiating X (at runtime) whether it gets
instantiated as P. It would be more complicated to create runtime checks for whether Y
gets instantiated as a function type that outputs P or not.

In addition to the kinds ∗ and K1 ⇒K2 of System Fω , we also have the kind Proc of
process names. Thus, process names are types, but they cannot be used to type any terms.

Additionally, we have Without kinds K \ ρ , which represents types of kind K which
do not mention any of the processes in the set ρ . We also refer to this kind as having a
restriction of the processes in ρ . Since we restrict the types that can be communicated
based on which processes they contain, as we will see soon, the Without kind can be used
to define polymorphic functions which contain communication. For instance, the term

Λ X :: Proc.ΛY :: Proc \ {X}. comInt@X
X ,Y (5 @ X)

defines a function which, given distinct processes X and Y , causes X to send 5 to Y . As we
will see in Section 3.2, restricting the processes involved in a type (and therefore the term
being typed) is essential for typing communications. In particular, we need to ensure that a
sender never tries to send something located at the receiver. Moreover, we need to ensure
that every part of the communicated value located at the sender actually gets moved to the
receiver, even if its location is an uninstantiated type variable.

In the rest of this section, we explore the semantics of PolyChorλ . First, we look at its
static semantics, both in the form of typing and kinding. Second, we describe its operational
semantics. Throughout, we will continue to give intuitions based on the concurrent inter-
pretation of PolyChorλ , though the semantics we give here does not correspond directly to
that interpretation.

3.1 Typing

We now turn to the type system for PolyChorλ . As before, our type system builds on that
for Chorλ . Here, we focus on the rules that are new in this work. Thus, we focus on rules
related to polymorphism, and those that have had to change due to polymorphism.

Typing judgements for PolyChorλ have the form Θ; Γ ⊢ M : τ , where Θ is the set of
process names—either names in N or type variables with kind Proc—used in M or the
type of M. The typing environment Γ is a list associating variables and function names to
their types and type variables and process names to their kinds. We sometimes refer to the
pair Θ; Γ as a typing context.

Selected rules for our type system can be found in Figure 3. The full collection of rules
are given in Appendix 1. Again, many of the rules are inherited directly from Chorλ (Cruz-
Filipe et al., 2022); we thus focus on the rules that have changed due to our additions. Many,
if not most, of these rules are inspired by System Fω . However, the addition of the kind of
processes and Without kinds—i.e., kinds of the form K \ ρ—also lead to some changes.

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

12

[TUNIT]
Θ; Γ ⊢ ν :: Proc

Θ; Γ ⊢ () @ ν : () @ ν
[TINT]

Θ; Γ ⊢ ν :: Proc

Θ; Γ ⊢ n @ ν : Int @ ν

[TAPP]
Θ; Γ ⊢ N : τ1 →ρ τ2 Θ; Γ ⊢ M : τ1

Θ; Γ ⊢ N M : τ2

[TABS]

Θ; Γ ⊢ τ1 :: ∗ Θ; Γ
′ ⊢ ν :: Proc for all ν ∈ ρ

Θ ∩ (ρ ∪ ip(τ1)∪ ip(τ2)∪ ftv(τ1)∪ ftv(τ2)); Γ, x : τ1 ⊢ M : τ2

Θ; Γ ⊢ λ x : τ1.M : τ1 →ρ τ2

[TSEL]
Θ; Γ ⊢ ν1 :: Proc Θ; Γ ⊢ ν2 :: Proc Θ; Γ ⊢ M : τ

Θ; Γ ⊢ selectν1,ν2 ℓ M : τ

[TCOM]

Θ; Γ ⊢ τ :: Proc⇒∗
Θ; Γ ⊢ ν1 :: Proc \ (mp(τ)∪ ftv(τ)) Θ; Γ ⊢ ν2 :: Proc \ (mp(τ)∪ ftv(τ))

Θ; Γ ⊢ comτ
ν1,ν2

: (τ ν1 →∅ τ ν2)

[TAPPT]
Θ; Γ ⊢ M : ∀X :: K. τ1 Θ; Γ ⊢ τ2 :: K

Θ; Γ ⊢ M τ2 : τ1[X 7→ τ2]

[TABST1]
Θ, X ; Γ + X & ρ \ {X}, X :: Proc \ ρ ⊢ M : τ

Θ; Γ ⊢ Λ X :: Proc \ ρ.M : ∀X :: Proc \ ρ. τ

[TABST2]
Θ, X ; Γ + X , X :: Proc ⊢ M : τ

Θ; Γ ⊢ Λ X :: Proc.M : ∀X :: Proc. τ

[TABST3]
Θ; Γ + X & ρ \ {X}, X :: K \ ρ ⊢ M : τ K ̸=Proc

Θ; Γ ⊢ Λ X :: K \ ρ.M : ∀X :: K \ ρ. τ

[TABST4]
Θ, X ; Γ + X , X :: K ⊢ M : τ K ̸=Proc ∄K′, ρ.K=K′ \ ρ

Θ; Γ ⊢ Λ X :: K.M : ∀X :: K. τ

[TEQ]
Θ; Γ ⊢ M : τ1 τ1 ≡ τ2 Θ; Γ ⊢ τ2 :: ∗

Θ; Γ ⊢ M : τ2

Fig. 3. Typing Rules (Selected)

The rules [Tunit] and [Tint] give types to values of base types. Here, we have to ensure
that the location of the term is a process. Intuitively, then, we want the location to have
kind Proc. However, it might be a Without kind—that is, it might be of the form Proc \ ρ .
In this case, our subkinding system (which you can find details about in Section 3.2) still
allows us to apply the rule.

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

13

We express function application and abstraction via the [Tapp] and [Tabs] rules, respec-
tively. The application rule [Tapp] is largely standard—the only addition is the addition of
a set ρ on the function type, as discussed earlier. The abstraction rule [Tabs], on the other
hand, is more complicated. First, it ensures that the argument type, τ1, has kind ∗. Then, it
ensures that every element in the set decorating the arrow is a process name—i.e., that it
has kind Proc. Finally, it checks that, in an extended environment, the body of the function
has the output type τ2. As is usual, this extended environment gives a type to the argument.
However, it restricts the available process names to those in the set ρ and those mentioned
in the types τ1 and τ2.

There are two ways that a type τ can mention a process: it can either name it directly, or
it can name it via a type variable. Thus, in the rule [Tabs] we allow the free variables of
τ1 and τ2 to remain in the process context, computing them using the (standard) free-type-
variable function where ∀X :: K.M and λX :: K.M both bind X . However, we must also
identify the involved processes in a type, which we write ip(τ) and compute as follows:

ip(X) =∅ ip(P) =P ip(() @ ν) = ip(Int @ ν) = ip(ν)

ip(ν1 →ρ ν2) = ip(ν1)∪ {P |P∈ ρ} ∪ ip(ν2)

ip(∀X :: K \ ρ. τ) = ip(λX :: K \ ρ. τ) = ip(τ)∪ (N \ ρ)

ip(∀X :: K. τ) = ip(λX :: K. τ) = N if ∄K′, ρ.K=K′ \ ρ

The involved processes of other types are defined homomorphically.
The communication primitives select and com are typed with [Tsel] and [Tcom],

respectively. A term selectν1,ν2 ℓ M behaves as M, where the process ν1 informs the pro-
cess ν2 that the ℓ branch has been taken, as we saw earlier. Thus, the entire term has type
τ if M does. Moreover, ν1 and ν2 must be processes.

The rule [Tcom] types com terms. So far we have been simplifying the type used in
comτ

P,Q for readability. We have been using τ to denote the input type, but as it turns out to
type comτ

P,Q correctly, we have to complicate things a little. Intuitively, a term comτ
ν1,ν2

M
represents ν1 communicating the parts of M on ν1 to ν2. Thus, we require that τ be a type
transformer requiring a process. Moreover, ν1 and ν2 cannot be mentioned in τ; otherwise
not every part of the type of M on ν1 in our example above would transfer to ν2. For this
we use the following notion of mentioned processes:

mp(X) =∅ mp(P) =P mp(() @ ν) =mp(Int @ ν) =mp(ν)

mp(ν1 →ρ ν2) =mp(ν1)∪ {P |P∈ ρ} ∪mp(ν2)

mp(∀X :: K \ ρ. τ) =mp(λX :: K \ ρ. τ) =mp(τ)∪ ρ

mp(∀X :: K. τ) =mp(λX :: K. τ) =mp(τ) if ∄K′, ρ.K=K′ \ ρ

Again, with other types being defined homomorphically. The difference between involved
and mentioned processes is subtle. If there is no polymorphism, they are the same, but
when dealing with polymorphism with restriction they are opposites: involved processes
includes every process not in the restriction (the variable could be instantiated as something
involving those processes and thus they may be involved), while mentioned names includes

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

14

the processes mentioned in the restriction. Mentioned names is used only when typing
com. If we have such a type-level function, τ , and two type values ν1 and ν2 which are
not and will not be instantiated to anything mentioned in τ then we can type comτ

ν1,ν2

as a function from τ ν1 to τ ν2. Since this is direct communication, no intermediaries are
necessary and we can associate this arrow with the empty set ∅.

It is worth noting at this point that the communication rule inspired our use of System Fω

rather than plain System F, which lacks type-level computation. In Chorλ and other pre-
vious choreographic languages, communicated values must be local to the sender. In
PolyChorλ , this would mean not allowing the communicated type to include type variables
or processes other than the sender. Since we are introducing the idea of using commu-
nication as a means of delegation, we have slackened that restriction. This means that
PolyChorλ programs can communicate larger choreographies whose type may involve
other processes, and importantly other type variables. We see this in the delegation exam-
ple Listing (1.5), where we have the communication comSeller,Seller2

. Adding in the
required type annotation (which we had suppressed in the introduction), this becomes
comλX ::Proc.String@X→∅()@B

Seller,Seller2
. Note that this still leaves us with a free type variable B, repre-

senting the unknown process that Seller is telling Seller2 to interact with! Since we cannot
ban free type variables in communicated types, we must create a typing system that can
handle them, and this requires type level computation.

To see why this led us to type-level computation, consider the alternative. In Chorλ
and other choreographic works, we would have a type communication using pro-
cess substitution instead of communication. The annotated program would then be
comString@Seller→∅()@B

Seller,Seller2
. When applied to a program of appropriate type, the result would

have type

(String @ Seller→∅ () @ B)[Seller 7→Seller2] =String @ Seller2 →∅ () @ B

Note that, because B is a type variable, it was ignored by the substitution. If B is later
instantiated as Seller, then we must substitute B with Seller2 in the output type. Thus, we
need some mechanism to delay this substitution; rather than use a mechanism like explicit
substitutions, we instead reached for the standard tool of System Fω . The communication
winds up instead being written as comλX ::Proc.String@X→∅()@B

Seller,Seller2
with X being instantiated

as Seller in the input type and Seller2 in the output type. This seemed more elegant and
less ad-hoc; moreover, it adds features which a real-world implementation of PolyChorλ
would want anyway. To ensure that B does not get instantiated incorrectly, we use our
Without kinds. Rule [Tcom] requires that both Seller and Seller2 are restricted on B,
which, thanks to our restrictions being symmetric, means that B cannot be instantiated as
either of them. The Without kinds here prevent nonsensical typings of com where in the
type, part of the output does not get moved from the sender to the receiver. This can happen
if a type variable present in the type of the communicated value will in the execution of the
choreography get instantiated before the communication takes place, but has not yet been
instantiated when we type the choreography. Were it not for the restrictions imposed by
Without kinds, we would allow the choreography

(Λ B :: Proc. λ f : String @ Seller→∅ () @ B. (comλX ::Proc.String@X→∅()@B
Seller,Seller2

f)) Seller

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

15

to get typed as (String @ Seller→∅ () @ Seller)→∅ (String @ Seller2 →∅ () @
Seller), which implies that part of the function is still at Seller after the communication
is executed. This is not what will happen when actually executing the choreography, so
the type is wrong. The Without kinds ensure that the choreography cannot be typed, as
the kind of B must be Proc \ {Seller,Seller2}, and it therefore cannot be instantiated as
Seller.

Returning now to the typing rules of Figure 3, we next have the [TappT], [TabsT1],
[TabsT2], [TabsT3] and [TabsT4] rules, which type universal quantification. The
[TappT] rule is completely standard, while the others are 4 cases of what to do with a
type abstraction. Each of these rules have a different definition for the typing context of M,
depending on the kind of X . As is standard, we check if the body of the function has the
right type when the parameter X has kind K. But first, if X is a process as in [TabsT1] and
[TabsT2], then we need to extend Θ with X . In addition we must further manipulate the
context in order to ensure that the types whose kinds are restricted on X correspond to the
restriction on the kind of X .

First, the new type variable X may shadow a previously-defined X . Thus, we need to
remove X from any Without kinds already in the context. We do this using the following
operation K+ ν :

(K \ ρ) + ν = (K+ ν) \ (ρ \ {ν})

We define + on other kinds homomorphically, and extend this to contexts as usual:

Γ + ν = {x : τ | x : τ ∈ Γ} ∪ {X : K+ ν | X : K∈ Γ}

Furthermore, in [TabsT1] and [TabsT4] if X itself has a Without kind—that is, X’s
kind tells us it cannot be any of the processes in ρ—then we need to symmetrically add a
restriction on X to every type in ρ . Otherwise, we would not be able to use the roles in ρ

in any place where we cannot use X , even though we know X will not be instantiated with
them. We do this with the operation Γ & ρ \ X , which we define as follows:

Γ & ρ \ X = {x : τ | x : τ ∈ Γ} ∪ {τ :: K | τ :: K ∈ Γ and τ /∈ ρ}
∪ {τ :: K \ (ρ2 ∪ {X}) | τ :: K \ ρ2 ∈ Γ and τ ∈ ρ}
∪ {τ :: K \ {X} | τ :: K∈ Γ, K ̸=K2 \ ρ2, and τ ∈ ρ}

With these operations in place, we can now fully understand how to type the type
abstractions. When K is actually a Without kind, then we must handle both shadowing
and symmetrical restrictions. However, when it is not a Without kind, we must only handle
shadowing. We show an example where every possible complication

Example 1 (Typing complex type abstractions). Consider the following choreography,
which takes a process A and sends an integer communication with A from P to Q:

M = Λ A :: Proc \ {P,Q}. comΛ X ::Proc. Int@X→∅Int@A
P,Q comΛY ::Proc. Int@Y

P,A

That A has a Without kind and the fact that A is a process means that we will need to use
Rule [TabsT1] when typing M. In order to illustrate the necessity of shadowing, we will
include an unnecessary process P2 in our environment. Setting Θ = {P,Q,P2}, we start

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

16

with the following judgment:

Θ; P : Proc,Q : Proc,P2 : Proc \ {A} ⊢ M : ∀A :: Proc \ {P,Q}. Int @ Q→∅ Int @ A

We need to take into account both that A is a process and that it has a Without kind in order
to make the choreography typeable. First, we shadow, obtaining the following:

(P : Proc,Q : Proc,P2 : Proc \ {A}) + A =P : Proc,Q : Proc,P2 : Proc

so we get rid of any restrictions on previous variables called A. We then add the new
symmetric restrictions necessary for typing the communication, as follows:

(P : Proc,Q : Proc,P2 : Proc) &{P,Q} \ A =P : Proc \ {A},Q : Proc \ {A},P2 : Proc

Continuing on, we can abbreviate K =Proc \ {A}. Finally, we add A to the environment
and Θ (writing Θ′ = Θ ∪ {A}), giving:

Θ′; P : K,Q : K,P2 : Proc, A : Proc \ {P,Q} ⊢ N : Int @ Q→∅ Int @ A

where M = Λ A :: Proc \ {P,Q}.N. Because of the restrictions in Rule [Tcom], N would
not be typable if we had not made sure to add the symmetric restrictions. We will fur-
thermore see in Section 3.2 that adding A to the set process names is also necessary when
kinding it with the Proc kind.

On the other hand, although the rule looks bigger at first glance, it is much simpler to
use Rule [TabsT4].

Example 2 (Typing simple type abstractions). Consider the following type abstraction,
which takes a type A and applies a variable of that type to a function which also returns
something of the same type:

Λ A :: ∗. λ x : A. λ f : A →∅ A. f x

We can type this as

/0; /0 ⊢ Λ A :: ∗. λ x : A. λ f : A →∅ A. f x : ∀A :: ∗.A →∅ A →∅ A →∅ A

Since we have no shadowing, the only way we have to manipulate our environment when
entering the type abstraction is to add A : ∗ to the environment, giving us

/0; A : ∗ ⊢ λ x : A. λ f : A →∅ A. f x : A →∅ A →∅ A →∅ A

Rules [TabsT2] and [TabsT3] are for cases of middling complexity. In Rule [TabsT2],
we have to add the type variable to Θ, as in [TabsT1]. However, since we have no restric-
tions, we do not need to consider symmetric conflict. In Rule [TabsT3], we do consider
symmetric conflicts, but do not add to Θ (since we are not dealing with a process).

The final addition to our type system is the rule [Teq]. This is another standard rule from
System Fω; it tells us that we are allowed to compute in types. More specifically, it tells us

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

17

that we can replace a type with an equivalent type, using the following equivalence:

τ ≡ τ

τ1 ≡ τ2

τ2 ≡ τ1

τ1 ≡ τ2 τ2 ≡ τ3

τ1 ≡ τ3

τ1 ≡ τ1
′

τ2 ≡ τ2
′

τ1 →ρ τ2 ≡ τ1
′ →ρ τ2

′
τ1 ≡ τ1

′
τ2 ≡ τ2

′

τ1 + τ2 ≡ τ1
′ + τ2

′
τ1 ≡ τ1

′
τ2 ≡ τ2

′

τ1 × τ2 ≡ τ1
′ × τ2

′

τ ≡ τ
′

λX :: K. τ ≡ λX :: K. τ
′ (λX :: K. τ1) τ2 ≡ τ1[X 7→ τ2]

τ1 ≡ τ1
′

τ2 ≡ τ2
′

τ1 τ2 ≡ τ1
′
τ2

′

τ ≡ τ
′

∀X :: K. τ ≡∀X :: K. τ
′

In addition to the rules in Figure 3 for typing choreographies, our type system needs
one more rule for typing the definitions of our recursive functions. We also add an extra
judgement of the form Θ; Γ ⊢ D where Θ; Γ is a typing context as before, and D is a set
of definitions for function variables—i.e., D = { f1 = M1, . . . fn = Mn}. We write D(f) for
the term associated with f in D. The only rule for this judgement is [Tdefs], which says
that a set of definitions is well-formed if every variable in D is associated with a type τ in
Γ, and the body of f in D can be given be given type τ in the context /0; Γ. We require that
the body of f can be typed with an empty set of roles because they are global predefined
functions, and as such they should not be local to any one process.

[TDEFS]
∀ f ∈ domain(D). f : τ ∈ Γ ∧ /0; Γ ⊢ D(f) : τ

Θ; Γ ⊢ D

3.2 Kinding

We finish our discussion of the static semantics of PolyChorλ by looking at our kinding
system. Our kinding system uses only one judgement, Θ; Γ ⊢ τ :: K, which says that in the
typing context Θ; Γ, the type τ has kind K. You can find the rules of our kinding system in
Figure 4. These are mostly directly inherited from System Fω . However, we must account
for Proc and Without kinds.

For instance, the rules [Kunit] and [Kint] check that the type representing which process
is storing the data indeed has the kind Proc. Similarly, [Kfun] ensures that all of the types
in the set of possible intermediaries are processes. The rule for type variables, [Kvar],
ensures that if a type variable X is assigned kind Proc, then X must also be in Θ.

One of the biggest differences between our kinding system and that of System Fω , how-
ever, is the rule [Ksub] which tells us that our system enjoys subkinding. The subkinding
rules come from the subset ordering on Without kinds. We also consider any kind equiv-
alent to the same kind restricted on the empty set due to [SKEmpty] and [SKWithoutL].

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

18

[KVAR]
X :: K ∈ Γ if K ∈ {Proc,Proc \ ρ} then X ∈ Θ

Θ; Γ ⊢ X :: K

[KROLE]

P :: K∈ Γ

K∈ {Proc,Proc \ ρ} P∈ Θ if K=Proc \ ρ then P /∈ ρ

Θ; Γ ⊢P :: K

[KUNIT]
Θ; Γ ⊢ τ :: Proc \ ρ

Θ; Γ ⊢ () @ τ :: ∗ \ ρ
[KINT]

Θ; Γ ⊢ τ :: Proc \ ρ

Θ; Γ ⊢ Int @ τ :: ∗ \ ρ

[KFUN]
Θ; Γ ⊢ τ1 :: ∗ \ ρ2 Θ; Γ ⊢ τ2 :: ∗ \ ρ2 ∀ν ∈ ρ1. Θ; Γ ⊢ ν :: Proc \ ρ2

Θ; Γ ⊢ τ1 →ρ1 τ2 :: ∗ \ ρ2

[KABS]
Θ; Γ, X :: K1 ⊢ τ :: K2

Θ; Γ ⊢ λX :: K1. τ :: K1 ⇒K2
[KALL]

Θ; Γ, X :: K ⊢ τ :: ∗ \ ρ

Θ; Γ ⊢ ∀X :: K. τ :: ∗ \ ρ

[KARR]
Θ; Γ ⊢ τ :: (K1 \ ρ)⇒ (K2 \ ρ)

Θ; Γ ⊢ τ :: (K1 ⇒K2) \ ρ
[KSUB]

Θ; Γ ⊢ τ :: K1 K1 <: K2

Θ; Γ ⊢ τ :: K2

[KSUM]
Θ; Γ ⊢ τ1 :: ∗ \ ρ Θ; Γ ⊢ τ2 :: ∗ \ ρ

Θ; Γ ⊢ τ1 + τ2 :: ∗ \ ρ

[KPROD]
Θ; Γ ⊢ τ1 :: ∗ \ ρ Θ; Γ ⊢ τ2 :: ∗ \ ρ

Θ; Γ ⊢ τ1 × τ2 :: ∗ \ ρ

Fig. 4. Kinding Rules

The rules for subkinding are as follows:

[SKREFL]
K<: K

[SKTRANS]
K1 <: K2 K2 <: K3

K1 <: K3

[SKARR]
K′

1 <: K1 K2 <: K′
2

K1 ⇒K2 <: K′
1 ⇒K′

2
[SKEMPTY]

K<: K \∅

[SKWITHOUTL]
K1 <: K2

K1 \ ρ <: K2
[SKWITHOUTUNION]

K1 <: K2

K1 \ (ρ1 ∪ ρ2)<: K2 \ ρ1

Lemma 1. Let τ be a type. If there exists a typing context Θ; Γ such that Θ; Γ ⊢ τ :: K then
there exists a unique type value ν such that τ ≡ ν .

Proof The existence of ν follows from induction on Θ; Γ ⊢ τ :: K and its uniqueness from
induction on τ ≡ ν . ■

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

19

[APPTABS]
τ ≡ ν

(Λ X :: K.M) τ →D M[X 7→ ν]
[MTAPP1]

M1 →D M2

M1 τ →D M2 τ

[DEF]
f →D D(f)

[SEL]
selectP,Q ℓ M →D M

[COM]
comτ

P,Q V →D V [P 7→Q]

Fig. 5. Semantics of PolyChorλ (Selected Rules)

Lemma 2 (Type restriction). Let τ be a type. If there exists a typing context Θ; Γ such that
Θ; Γ ⊢ τ :: K \ ρ then (ip(τ)∪ ftv(τ))∩ ρ = /0.

Proof Follows from kinding rules. ■

Theorem 1 (Kindable types). Let M be a choreography and τ be a type such that Θ; Γ ⊢
M : τ . Then Θ; Γ ⊢ τ :: ∗.

Proof Follows from induction on the derivation of Θ; Γ ⊢ M : τ and the kinding rules. ■

We also find that types have the same kinds as their equivalent type values. Due to β -
expansion, a kindable type can be equivalent to an unkindable type, but not an unkindable
type value.

Theorem 2 (Kind Preservation). Let τ be a type. If there exists a typing context Θ; Γ such
that Θ; Γ ⊢ τ :: K, then Θ; Γ ⊢ ν :: K for any type value ν such that τ ≡ ν .

Proof Follows from the kinding and type equivalence rules. The only way that a kindable
type τ can be equivalent to a type which is not kindable is when we have types τ1 and τ2

such that τ = τ1[X 7→ τ2]. In that case, if we use the rule (λX :: K. τ1) τ2 ≡ τ1[X 7→ τ2] to
create an unkindable τ ′ ≡ τ with an extra application. However, this unkindable type is not
a type value, and in fact we must also use the same rule to remove this new type application
before we get to a type value. ■

Example 3. We return to the delegation example (Listing (1.5)) and try to type it. As B
appears free in the type of a value, F , being communicated between Seller and Seller2, B
must actually have the Without kind Proc \ {Seller,Seller2}. The choreography therefore
gets the type

∀B :: Proc \ {Seller,Seller2}.
String @ B →{Seller,Seller2} ((Int @ B →∅ Bool @ B)→{Seller,Seller2} () @ B)

This type shows both the input, output, and involved roles of the choreography.

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

20

3.3 Operational Semantics

Finally, we consider the operational semantics of PolyChorλ . In practice, the semantics of
a choreographic language can be used to simulate a choreography and check if it specifies
the expected collective behaviour. Its key role, however, is to prove properties about the
projected local code. Specifically, we are going to prove that the projected code is com-
pliant to the choreography (an operational correspondence result) and that as a result it is
deadlock-free. The semantics of PolyChorλ are mostly a standard call-by-value reduction
semantics for a typed λ calculus. However, the reduction semantics must also carry a set D
of function definitions. Only a few rules are unusual or must be modified; those can be
found in Figure 5. You can find the rest of the rules in Appendix 2.

The rules [AppTAbs] and [MTApp1] come from System Fω . The rule [AppTAbs] is
similar to ordinary CBV β reduction, but tells us how to reduce a type abstraction applied
to a type value, but with the caveat that if we do not have a type value we must use type
equivalence to get one before reducing. The rule [MTApp1] tells us that we can reduce a
type function applied to any argument.

The rule [Def] allows us to reduce function names by looking up their definition in the
set D.

Finally, we have the rules for communication. The rule [Sel] says that select acts as
a no-op, as we stated earlier. While this may seem redundant, such terms are vital for
projection, as we will see in the next section. More importantly, the [Com] rule tells us
how we represent communication at the choreography level: via substitution of roles. This
also helps explain some of the restrictions in [Tcom]. Since we replace all mentions of P
with Q in V , we cannot allow other mentions of P in the type transformer of V . Otherwise,
there could be some mentions of P which should not be replaced during communication,
which we do not model. Unlike when typing comτ

P,Q V , when executing a communication
we know (since we only consider choreographies without free variables) that any type
variables in τ or V have already been instantiated and as such do we do not need to consider
how to substitute variables which may later be instantiated to P or Q.

It may be surprising to learn that our semantics are simply call-by-value reduction
semantics, especially for those readers familiar with choreographies. After all, choreogra-
phies are supposed to represent concurrent programs, and so multiple redices should be
available at any time. Indeed, previous works on choreographic programming (e.g. Hirsch
and Garg, 2022; Cruz-Filipe and Montesi, 2020; Carbone and Montesi, 2013) provided
a semantics with out-of-order execution, so that the operational semantics of the chore-
ographies matched with all possible reductions in the concurrent interpretation. We use
these simpler semantics, without out-of-order execution, instead. In exchange, our result
in Section 5 will be weaker: we only promise that any value which the choreography can
reduce to, so can the concurrent interpretation.

To see why we chose to obtain this weaker result, consider the choreography

f ((comλX ::Proc. Int@X
Q1,Q2

(3 @ Q1)),(4 @ P))

Here we have a function f which needs to be instantiated with a distributed pair. P is
ready to feed its part of the argument into f and start computing the result, while Q1 and
Q2 are still working on computing their part of the argument. There are two ways we

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

21

could interpret PolyChorλ concurrently: we can synchronize when all processes enter a
function or we can allow P to enter the function early. We take the second, more practical,
route. However, this means it is not possible to reflect at least one evaluation order into
the semantics of the choreography without banning distributed values or allowing us to
somehow call a single value in multiple steps. This insight led to us adopting the weaker
guarantee discussed above.

As is standard for call-by-value λ -calculi, we are able to show that our type system
is sound with respect to our operational semantics, as expressed in the following two
theorems:

Theorem 3 (Type Preservation). Let M be a choreography and D a function mapping
containing every function in M. If there exists a typing context Θ; Γ such that Θ; Γ ⊢ M : τ

and Θ; Γ ⊢ D, then Θ; Γ ⊢ M′ : τ for any M′ such that M →D M′.

Proof Follows from the typing and semantic rules and Theorem 2. ■

Theorem 4 (Progress). Let M be a closed choreography and D a function mapping con-
taining every function in M. If there exists a typing context Θ; Γ such that Θ; Γ ⊢ M : τ and
Θ; Γ ⊢ D, then either M =V or there exists M′ such that M →D M′.

Proof Follows from the typing and semantic rules. ■

4 Endpoint Projection

We now proceed to the most important result for any choreographic programming lan-
guage: endpoint projection. Endpoint projection gives a concurrent interpretation to our
language PolyChorλ by translating it to a parallel composition of programs, one for each
process. In order to define endpoint projection, though, we must define our process lan-
guage, which we refer to as a local language. The syntax of the local language can be
found in Figure 6. There you can also find the syntax of local transition labels and net-
work transition labels, both of which will be described when we describe the operational
semantics of networks.

As in PolyChorλ , our local language inherits much of its structure from System Fω . In
particular, we have products, sums, functions, universal quantification, and λ types, along
with their corresponding terms. In fact, some types look more like standard System Fω

than PolyChorλ : function types do not need a set of processes which may participate in
the function, and base types no longer need a location.

However, not everything is familiar; we have introduced new terms and new types. The
terms sendv and recvv allow terms to send and receive values, respectively. We also split
select terms into two terms: an offer term &v {ℓ1 : L1, . . . , ℓn : Ln} which allows v to
choose how this term will evolve. We represent such choices using choice terms of the
form ⊕v ℓ L. This term informs the process represented by v that it should reduce to its
subterm labeled by ℓ, and then itself reduces to the term L. While these are unusual pieces
of a polymorphic language like System Fω , they are familiar from process languages like
π calculus. We also add undefined types and terms, written ⊥ and ⊥, respectively. These

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

22

Variables x, y, . . .
Type Variables X ,Y, . . .
Process Names P
Local Transition Labels µ ::= τ | P | sendP L L′ | recvP L′ L

| ⊕P ℓ | &P ℓ

Network Transition Labels µ ::= τP

Process labels P ::= P | P,Q
Local Types t ::= v | t1 t2 | AmI v ? t1 & t2 | t1 → t2

| t1 + t2 | t1 × t2 | ∀X. t | λX. t
Local Type Values v ::= X | () | Int | v1 → v2 | P | ⊥

| v1 + v2 | v1 × v2 | ∀X. v | λX. v
Local Expressions B ::= x | () | n | λ x : t.B | Λ X.B

| B1 B2 | B t | inlt B | inrt B
| case B of inl x ⇒ B1; inr y ⇒ B2

| (B1,B2) | fst B | snd B
| sendv | recvv

| &v {ℓ1 : B1, . . . , ℓn : Bn} | ⊕v ℓ B
| sub[v1 7→ v2] | f | AmI v ? B1 & B2

Local Values L ::= x | () | n | ⊥ | λ x : t.B | Λ X.B
| inlt L | inrt L | (L1,L2)

| sendv | recvv | sub[v1 7→ v2]

Fig. 6. Local Language Syntax

represent terms which are ill-defined; we use them to represent data which does not exist on
some process P, but which needs to be written structurally in P’s program. For instance, ⊥
is the result of sending a value without process polymorphism. We also use it as the input
of recv, since both send and recv are functions which require an input. More generally, if
a process P participates in a function but the input and/or output is located elsewhere, we
will use ⊥ to represent that input and/or output. The type ⊥ is only used for the term ⊥.

We also include a more unusual feature: explicit substitutions of processes. The
term sub[v1 7→ v2] is a function which, when applied, replaces the role denoted by v1 with
that denoted by v2 in its argument. This function allows us to represent the view of com-
munication according to third parties: the roles simply change, without any mechanism
necessary. For instance, imagine that Alice wants to tell Bob to communicate an integer
to Cathy. She can do this by sending Bob the function comλX ::Proc. Int@X

Alice,Cathy . In PolyChorλ ,
this corresponds to the choreography

comλX ::Proc. Int@X→∅Int@Cathy
Alice,Bob

(
comλX ::Proc. Int@X

Alice,Cathy

)
In order to project this choreography, we need to be able to project the communication
function above even when it is not applied to any arguments. This is where we use explicit
substitutions: we project the communication function to sub[Alice 7→Bob].

Finally, we introduce our unique feature: AmI terms and their corresponding type. These
represent the ability of a process to know its own identity, and to take actions based

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

23

on that knowledge. Process polymorphism requires an instantiation of a process vari-
able at process P to be accompanied by a conditional determining whether the variable
has been instantiated as P or as some other process P may interact with. In particular,
the term AmI v ? B1 & B2 reduces to B1 if the term is run by the process denoted by v,
and B2 otherwise. Since B1 and B2 may have different types, we provide types of the
form AmI v ? t1 & t2, which represent either the type t1 (if typing a term on the process
denoted by v) or t2 (otherwise). These terms form a backbone of endpoint projection for
PolyChorλ : every Λ term binding a process gets translated to include an AmI term. For
instance, consider projecting the choreography

Λ X :: Proc. comλX ′::Proc. Int@X ′
Q,X 4 @ Q

to some process P. Depending on the argument to which this function is applied, P should
behave very differently: if it is applied to P itself, it should receive something from Q.
However, if it’s applied to any other term, it should do nothing. We therefore project the
choreography above to the following program for P:

Λ X.AmI X ? recvQ ⊥ & ⊥

Note that the AmI construct is necessary for process polymorphism in general, unless
process variables cannot be instantiated to the process they are located at. It, and the
combinatorial explosion caused by having multiple process abstractions, is not caused
by the choreographic language but instead the choreographic language hides it and lets
programmers avoid explicitly describing both sides of the AmI separately.

Note that we do not have a kinding system for local programs. In fact, we do not check
the types of local programs at all. However, because types have computational content, we
need to project them as well. In order to preserve that computational content, we again
use an equivalence of types which corresponds to β , η-equivalence. However, in order to
accommodate AmI types, we must index that equivalence with a process. Then, we have
two rules regarding AmI types:

[IAM]
AmI P ? t1 & t2 ≡P t1

[IAMNOT]
P ̸=Q

AmI Q ? t1 & t2 ≡P t2

We use these equivalence rules with process annotation to ensure that processes only
use equivalences indexed with their own name and do not pick the wrong branch of an
AmI type. This way we project the type (λX :: Proc. Int @ X) P as (λX.AmI X ? Int &
⊥) P which is equivalent to Int and P but ⊥ everywhere else.

Now that we have seen the syntax of the programs which run on each process, we can
look at whole networks:

Definition 1. A network N is a finite map from a set of processes to local programs. We
often write P1[L1] | · · · |Pn[Ln] for the network where process Pi has behaviour Li.

The parallel composition of two networks N and N ′ with disjoint domains, N |N ′,
simply assigns to each process its behaviour in the network defining it. Any network is
equivalent to a parallel composition of networks with singleton domain, as suggested by
the syntax above.

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

24

We now consider the operational semantics of local programs and networks. These are
given via labelled-transition systems; the syntax of both sorts of label can be found in
Figure 6. The network transitions are labelled with τP where P is the set of involved pro-
cesses (either one for a local action or two for a synchronisation). The local transitions have
more options for labels. The label τ denotes a normal local computation. We use the pro-
cess name P as a label for an action which can only take place at P. The label sendP L L′

denotes sending the value L to P, leaving L′ after the send—we will explain what a label
left behind after the send does when we discuss the semantics of local communication in
detail. The label recvP L′ L is the dual: it denotes receiving L′ from P, with L being the
value the receiver had before receiving. Again, we explain the semantics of receiving in
detail later. Finally, the label ⊕P ℓ denotes sending a label ℓ to P, while the label &P ℓ

denotes receiving the label ℓ from P.
Selected rules for both operational semantics can be found in Figures 7 and 8. As before,

transitions are indexed by a set d of function definitions. Function variables reduce by look-
ing up their definition in d. Since this transition involves no communication, it is labelled
with the empty transition, τ .

Perhaps surprisingly, undefined arguments to functions do not immediately cause the
application to be undefined. To see why, think about choreographies of the form (λ x :
Int @ P.M) N where some process Q ̸=P is involved in both M and N. We project this to
an application on Q of the form (λ x : ⊥. JMKQ) JNKQ. Note that because we know that
N has type Int @ P, the projection JNKQ has type ⊥ and eventually evaluates to ⊥. Thus,
if (λ x : ⊥. JMKQ)⊥ immediately evaluated to ⊥, the process Q could not participate in
M, as they need to do! We therefore allow this to evaluate to JMKQ. However, when the
function is also undefined, we evaluate this to ⊥ with the empty label τ , as you can see in
the rules [NBot] and [NBott]

As mentioned earlier, the explicit substitutions sub[P 7→Q] are functions which, when
applied, perform the requested substitution in the value to which they are applied. This is
implemented in the rule [NSub].

The AmI terms are given meaning via the rules [NAmIR] and [NAmIL]. The
rule [NAmIR] says that the term AmI P ? L1 & L2 can evaluate to L1 with label P, while
the rule [NAmIL] says that it can instead reduce to L2 with label Q where Q ̸=P. We will
see later that in the network semantics, we only allow transitions labeled with the process
performing the transition.

Choice and offer terms reduce via the rules [NCho] and [Noff]. The first, [Ncho], tells
us that a choice term simply reduces to its continuation with a transition label indicating
the choice that has been made. The second, [Noff], tells us that an offer term can reduce to
any continuation, with a transition label indicating the label of the continuation it reduced
to. We will see later that the semantics of networks only allows the offer term to reduce to
the continuation chosen by a matching choice term.

Finally, the send and recv terms are given meaning via [NSend] and [NRecv], respec-
tively. However, these rules behave somewhat-differently than might be expected: rather
than acting as a plain send and receive, they behave more like a swap of information.

In a plain send, the sender would not have any information after the send—perhaps the
term would come with a continuation, but this would not be related to the send. Moreover,
the receiver would not provide any information, but merely receive the information from

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

25

[NDEF] f τ−→d d(f) [NABSAPP] (λ x : t.B) L τ−→d B[x 7→ L]

[NBABS]
t ≡P v

(Λ X.B) t P−→d B[X 7→ v] [NBOT] ⊥⊥ τ−→d ⊥

[NSUB] sub[P 7→Q] L τ−→d L[P 7→Q] [NBOTT] ⊥⊥ τ−→d ⊥

[NAMIR] AmI P ? L1 & L2
P−→d L1

[NAMIL]
Q ̸=P

AmI P ? L1 & L2
Q−→d L2

[NCHO] ⊕P ℓ L
⊕P ℓ−−−→d L [NOFF] &P {ℓ1 : L1, . . . , ℓn : Ln}

&P ℓi−−−→d Li

[NSEND] sendP L1
sendP L1 L2−−−−−−−→d L2 [NRECV] recvP L1

recvP L2 L1−−−−−−−→d L2

[NAPP1]
B1

µ−→d B2

B1 B′ µ−→d B2 B′
[NAPP2]

B
µ−→d B′

L B
µ−→d L B′

[NTAPP1]
B

µ−→d B′

B t
µ−→d B t

[NINL]
B

µ−→d B′

inlt B
µ−→d inlt B′

[NINR]
B

µ−→d B′

inrt B
µ−→d inrt B′

[NCASE]
B

µ−→d B′

case B of inl x ⇒ B1; inr y ⇒ B2
µ−→d case B′ of inl x ⇒ B1; inr y ⇒ B2

[NCASEL] case inlt L of inl x ⇒ B1; inr y ⇒ B2
τ−→d B1[x 7→ L]

[NCASER] case inrt L of inl x ⇒ B1; inr y ⇒ B2
τ−→d B2[x 7→ L]

[NPAIR1]
B1

µ−→d B′
1

(B1,B2)
µ−→d (B′

1,B2)
[NPAIR2]

B2
µ−→d B′

2

(B1,B2)
µ−→d (B1,B′

2)

[FST]
B1 →D B2

fst B1 →D fst B2
[SND]

B1 →D B2

snd B1 →D snd B2 [NPROJ1] fst (L1,L2)
τ−→d L1

[NPROJ2] snd (L1,L2)
τ−→d L2

Fig. 7. Semantics of Local Processes

the sender. However, when sending a choreography with process polymorphism, the sender
may need to participate in the continuation, depending on how polymorphic functions are
applied. For instance, consider the following choreography, where P sends a polymorphic

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

26

[NCOM]
L1

sendP L (L′[Q 7→P])−−−−−−−−−−−→d L′
1 L2

recvQ (L[Q7→P]) L′
−−−−−−−−−−−→d L′

2

Q[L1] |P[L2]
τQ,P−−→d Q[L′

1] |P[L′
2]

[NSEL]
L1

⊕P ℓ−−−→d L′
1 L2

&Q ℓ
−−−→d L′

2

Q[L1] |P[L2]
τQ,P−−→d Q[L′

1] |P[L′
2]

[NPROAM]
L P−→d L′

P[L]
τP−→d P[L′]

[NPRO]
L τ−→d L′

P[L]
τP−→d P[L′]

[NPAR]
N1

τP−−→d N2

N1 |N ′ τP−−→d N2 |N ′

Fig. 8. Semantics of Networks

function to Q, and the resulting polymorphic function is applied to P:

(comλY ::Proc.∀X ::Proc. Int@X
P,Q (Λ X :: Proc. comλY ′::Proc. Int@Y ′

P,X (5 @ P))) P

The polymorphic function that results from the com above is as follows:

Λ X :: Proc.
(

comλY ′::Proc. Int@Y ′
Q,X (5 @ Q)

)
Applying this to P leads to a program where P receives from Q. Since P needs to par-
ticipate in this program, P must have a program remaining after sending the polymorphic
function to Q.

While this explains why send terms cannot simply, for instance, return unit, it does not
explain why send and recv terms swap results. To see this, consider what happens when
a term is sent from a process P to another process Q. We know from our type system that
Q is not mentioned in the type of the term being sent, and we know that after the send
all mentions of P are changed to mentions of Q. Hence, after the send, P’s version of the
term should be the view of a process not involved in the term. This is exactly what Q’s
version of the term is before the send. Thus, sends and recvs behaving as swaps leads to
the correct behaviour.

Example 4 (Send And Receive). We now show the local projection (formalised in
Section 4.1) and desired behaviour of

(comλY ::Proc.∀X ::Proc. Int@X
P,Q (Λ X :: Proc. comλY ′::Proc. Int@Y ′

P,X (5 @ P))) P

This choreography generates the network:

P[(sendQ (Λ X.AmI X ? (λ x : λY ′.AmI Y ′ ? Int & ⊥ P. x) & (sendX 5))) P]|
Q[(recvP (Λ X.AmI X ? (recvP ⊥) & (⊥))) P]

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

27

Using our semantics, we get the following reductions:

P[(sendQ (Λ X.AmI X ? (λ x : λY ′.AmI Y ′ ? Int & ⊥ P. x) & (sendX 5))) P]|
Q[(recvP (Λ X.AmI X ? (recvP ⊥) & (⊥))) P]
τP,Q−−→ /0

P[(Λ X.AmI X ? (recvQ ⊥) & (⊥)) P]|
Q[(Λ X.AmI X ? (λ x : λY ′.AmI Y ′ ? Int & ⊥ Q. x) & (sendX 5)) P]
τP−→ /0

P[(AmI P ? (recvQ ⊥) & (⊥))]|
Q[(Λ X.AmI X ? (λ x : λY ′.AmI Y ′ ? Int & ⊥ Q. x) & (sendX 5)) P]
τP−→ /0

P[recvQ ⊥]|
Q[(Λ X.AmI X ? (λ x : λY ′.AmI Y ′ ? Int & ⊥ Q. x) & (sendX 5)) P]
τQ−→ /0

P[recvQ ⊥]|
Q[AmI P ? (λ x : λY ′.AmI Y ′ ? Int & ⊥ Q. x) & (sendX 5)]
τQ−→ /0

P[recvQ ⊥]|Q[(sendX 5)]
τQ,P−−→ /0

P[5]|Q[⊥]

Now that we have discussed the semantics of local programs, we discuss the semantics
of networks. Each transition in the network semantics has a silent label indexed with the
processes participating in that reduction: τP , where P consists of either one process name
(for local actions at that process) or two process names (for interactions involving these two
processes). We treat P as a set, implicitly allowing for exchange.

For instance, the rule [NCom] describes communication. Here, one local term must
reduce with a send label, while another reduces with a recv label. These labels must
match, in the sense that the value received by the recv must be the value sent by the
send—though with the receiver in place of the sender—and vice-versa. Then, a network
in which the local terms are associated with the appropriate processes, Q and P, can reduce
with the label τQ,P. Similarly, the rules [NSel] reduces matching choice and select terms,
resulting in the label τQ,P.

While [NCom] and [NSel] describe communication, the rest of the rules describe how
a single process’s term can evolve over time in a network. Particularly interesting is
[NProam], which says that a AmI term can reduce only according to the process it is
associated with. We can see here that the resulting label is τP, indicating that this reduction
step only involves P.

The rules [NPro] tells us how to lift steps with an empty label τ . Such steps make no
assumptions about the network, and so such terms can be associated with any process P.
When such a reduction takes place in a network, we label the resulting transition τP.

Finally, the rule [NPar] says that if one part of a network can reduce with a label τP ,
then the entire network can reduce with that same label. This allows the other rules, which
assume minimal networks, to be applied in larger networks.

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

28

In the future we will use →∗ and →+ to denote respectively a sequence and a sequence
of at least one action with arbitrary labels.

4.1 Projection

We can now define the endpoint projection (EPP) of choreographies. This describes a sin-
gle process’s view of the choreography; the concurrent interpretation of a choreography is
given by composing the projection to every process in parallel. Endpoint projection to a
particular process P is defined as a recursive function over typing derivations Θ; Γ ⊢ M : τ .
For readability, however, we write it as a recursive function over the term M, and use the
notation typeof(N) to refer to the types assigned to any term N in the implicit typing
derivation. Similarly, we use kindof(τ) to refer to the kind of a type τ in the implicit typ-
ing derivation. We write JMKP to denote the projection of the term M (implicitly a typing
derivation for M, proving that it has some type) to the process P.

Intuitively, projection translates a choreography term to its corresponding local behav-
ior. For example, a communication action projects to a send (for the sender), a receive
(for the receiver), a substitution (for the other processes in the type of the value being
communicated) or an empty process (for the remaining processes). However, this is more
complicated for case statements. For instance, consider the following choreography,
which matches on a sum type which is either an integer on Alice or a unit on Alice. If
it is an integer, then Bob receives that integer from Alice and the choreography returns the
integer now located at Bob. Otherwise, The choreography returns the default value 42 also
located at Bob. Alice informs Bob of which branch she has taken using select terms.

λ z : (Int @ Alice) + (() @ Alice).
case z of
inl x ⇒ selectAlice,Bob Just (comλX. Int@X

Alice,Bob x);
inr y ⇒ selectAlice,Bob Nothing (42 @ Bob)

 inl()@Alice (3 @ Alice)

Imagine projecting this to Bob’s point of view. He does not have any of the information
in the sum, so he cannot participate in choosing which branch of the case expression gets
evaluated. Instead, he has to wait for Alice to tell him which branch he is in. If we naı̈vely
translate just the first branch of the case expression, Bob waits for Alice to send him the
label Just and then waits for Alice to send him an integer. Similarly, in the second branch
Bob waits for Alice to send him the label Nothing before returning the default value 42.
Somehow, we need to combine these so that Bob waits for either label, and then takes the
corresponding action.

We do this by merging Bob’s local programs for each branch (Carbone et al., 2012;
Cruz-Filipe and Montesi, 2020; Honda et al., 2016). Merging is a partial function which
combines two compatible local programs, combining choice statements. In other words,
the key property of merging is:

&P {ℓi : Bi}i∈I ⊔ &P {ℓ j : B′
j} j∈J =

&P
(
{ℓk : Bk ⊔ B′

k}k∈I∩J ∪ {ℓi : Bi}i∈I\J ∪ {ℓ j : B′
j} j∈J\I

)

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

29

Merging is defined homomorphically on other terms, though it is undefined on incom-
patible terms. Thus, for example, inlt B ⊔ inlt B′ = inlt (B ⊔ B′), but inlt1 B ⊔ inrt2 B′ is
undefined.

We can then use this to project the choreography above to Bob as:

(λ z : ⊥.&Alice {Just : (recvAlice ⊥,Nothing : 42}) ⊥

Where ⊥ represents a part of the choreography executed by Alice.

Definition 2. The EPP of a choreography M for process P is defined by the rules in
Figures 9, 10 and 11.

To project a network from a choreography, we therefore project the choreography for
each process and combine the results in parallel: JMK = ∏P∈ip(M) P [JMKP].

Intuitively, projecting a choreography to a process that is not involved in it returns a ⊥.
More complex choreographies, though, may involve processes that are not shown in their
type. This explains the first clause for projecting an application: even if P does not appear
in the type of M, it may participate in interactions inside M. A similar observation applies
to the projection of case, where merging is also used.

Selections and communications follow the intuition given above, with one interesting
detail: self-selections are ignored, and self-communications project to the identity func-
tion. This is different from many other choreography calculi, where self-communications
are not allowed—we do not want to impose this in PolyChorλ , since we have process poly-
morphism and therefore do not want to place unnecessary restrictions on which processes
a choreography can be instantiated with.

Any process P must prepare two behaviours for a process abstraction Λ X :: Proc.M:
one for when X is instantiated with P itself, and one for when X is instantiated with another
process. To do this, we use AmI terms, which allow P to use its knowledge of its identity to
select which behaviour takes place. (This also holds when X has a Without kind, as long as
the base kind is Proc, though if P is excluded from the type of X and P does not participate
in M then we simply project to ⊥.) However, type abstractions Λ X :: K.M do not use AmI
terms if K is not a kind of processes, since P cannot instantiate X .

When projecting an application, we may project both the function and its argument,
either one but not the other, or neither. While it may seem simple—just project both sides,
and get rid of any ⊥s or ⊥s that come up—it turns out to be somewhat complicated. In
order to ensure every process performs actions in the same order and avoid communication
mismatches, we must project an abstraction for any process involved in the computation,
even if they do not have the input (Cruz-Filipe et al., 2023, Example 6). To see why this
causes complications, consider M = λ x : Int @ P. 5 @ Q. When M gets projected to Q, it
becomes λ x. 5. However, applying M to an argument—say, M 2 @ P—needs to lead to a
function application on Q! Thus, we project this to (λ x. 5) ⊥, allowing Q to instantiate its
function. We use the type system to identify the cases where we need to keep ⊥ or ⊥ and
those where we should only project the function part of an (type) application.

Type applications work a bit differently. Since there is no chance of communication hap-
pening while computing a type, we can project only the body of a type abstraction without
the actual abstraction to P when we know the argument is not located at P. In addition, we

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

30

do not have a case for projecting only the argument, since the context surrounding a type
abstraction will not expect a type.

In general, projecting a type yields ⊥ at any process not used in that type. We use the
restrictions on kinds to avoid projecting type variables and type abstractions when we know
we do not need to and project all process names to themselves, but otherwise the projection
of type constructs is similar to that of corresponding process terms.

Finally, to execute a projected choreography, we need to project the set of definitions of
choreographic functions to a set of definitions of local functions. Since these functions are
all parametrised over every involved process, this is as simple as projecting the definitions
onto an arbitrarily chosen process name.

JDK = { f 7→ JD(f)KP | f ∈ domain(D)}}

Note that function names always get projected everywhere. This means that if we have
a function which does not terminate when applied to some value in any process, then it
diverges when applied to that value in the choreography and in every other process.

Example 5. We will now show how to project the bookseller service example Eq. (1.3).
As in that example we use let x = B in B′ as syntactic sugar for λ x : t.B′ B for some t and
if B1 then B2 else B3 as syntactic sugar for case B1 of inl x ⇒ B2; inr x ⇒ B3 for some
x /∈ (fv(B2)∪ fv(B3)). We project for Seller and get the following process:

Λ B.
AmI B
? λ title.

λ buyAtPrice?.
let x = (λ y. y) title
in let y = (λ z. z) (price lookup x)

in if buyAtPrice? y
then ()

else ()

& λ title.
λ buyAtPrice?.
let x = recvB ⊥
in let y = sendB (price lookup x)

in &B {Buy : (),Quit : ()}

Here we can see that if the buyer B turns out to be Seller itself, then all the
communications become identity functions, and the seller does not inform itself of
its choice. Otherwise, we get a function which, after being instantiated with a buyer,
also needs to be instantiated with two ⊥s representing values existing at B. It then
waits for B to send a title, returns the price of this title, and waits for B to decide
whether to buy or not. It might seem strange to have a function parametric on two
values that are located at B and will therefore here be instantiated with ⊥s, but this
example actually illustrates why when projecting we cannot in cases like this remove
the first two λ s from the process without causing a deadlock. Consider that let y =

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

31

sendB (price lookup x)in &B {Buy : (),Quit : ()} is syntactic sugar for (λ y.&B {Buy :
(),Quit : ()}) (sendB (price lookup x)). Here we need to have the abstraction on y even
though it gets instantiated as ⊥ after Seller sends the result of price lookup x to B. If
instead we only had (&B {Buy : (),Quit : ()}) (sendB (price lookup x)), then the first
part of the application would not be a value, and would be waiting for B to choose between
Buy and Quit while B has the abstraction on y and therefore considers the first part of the
application a function which must wait to be instantiated. B therefore expects to receive
the result of price lookup x, and we get a deadlock in our system. This is why we never
want to project a value to a non-value term, and need to keep any abstractions guarding a
part of the choreography involving Seller.

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

32

JxKP =

{
⊥ if Jtypeof(x)KP =⊥
x otherwise

J f KP = f

J() @ νKP =

{
() if JνKP =P
⊥ otherwise

Jn @ νKP =

{
n if JνKP =P
⊥ otherwise

Jλ x : τ.MKP =

 ⊥ if JMKP = ⊥
and JτKP = ⊥

λ x : JτKP . JMKP otherwise

JM NKP =



⊥ if JMKP = JNKP =⊥

JMKP JNKP
if P∈ ip(typeof(M))

or JMKP ̸=⊥ ≠ JNKP
JMKP if JNKP =⊥
JNKP otherwise

JΛ X :: K.MKP =



Λ X.AmI X
? JM[X 7→P]KP
& JMKP

if K ∈ {Proc, Proc \ ρ}

JMKP if K =K′ \ {P} ∪ ρ

Λ X. JMKP otherwise

JM τKP =


⊥ if JMKP = JτKP =⊥

JMKP
if JτKP =⊥

and P /∈ ip(typeof(M))

JMKP JτKP otherwise

Jinlτ MKP

=


⊥ if JMKP =⊥ and

kindof(τ) =K \ ρ

JM1KP if Jtypeof(M)KP =⊥
inlJτKP

JM1KP otherwise

Jinrτ MKP

=


⊥ if JMKP =⊥ and

kindof(τ) =K \ ρ

JM1KP if Jtypeof(M)KP =⊥
inrJτKP

JM1KP otherwise

Fig. 9. Projection of PolyChorλ Programs

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

33

Jcase M of inl x ⇒ N1; inr y ⇒ N2KP =

case JMKP of inl x ⇒ JN1KP ; inr y ⇒ JN2KP if P ∈ ip(typeof(M))

⊥ if JMKP = JN1KP = JN2KP =⊥
JMKP if JN1KP = JN2KP =⊥
JN1KP ⊔ JN2KP if JMKP =⊥
(λ z : ⊥. (JN1KP ⊔ JN2KP)) JMKP (z fresh) otherwise

J(M1, M2)KP =

{
⊥ if JM1KP = JM2KP =⊥
(JM1KP , JM2KP) otherwise

Jfst MKP =


⊥ if JMKP =⊥
JM1KP if Jtypeof(M)KP =⊥
fst JM1KP otherwise

Jsnd MKP =


⊥ if JMKP =⊥
JM1KP if Jtypeof(M)KP =⊥
snd JM1KP otherwise

q
selectQ1,Q2 ℓ M

y
P =

⊕Q′ ℓ JMKP if P=Q1 ̸=Q2
&S {ℓ : JMKP} if P=Q2 ̸=Q1
JMKP otherwise

r
comτ

Q1,Q2

z

P
=

λ x : Jτ PKP . x if P=Q1 =Q2
sendQ2 if P=Q1 ̸=Q2
recvQ1 if P=Q2 ̸=Q1
sub[Q1 7→Q2] if JτKP ̸=⊥
⊥ otherwise

Fig. 10. Projection of PolyChorλ Programs (ctd.)

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

34

JXKP =

{
⊥ if kindof(X) =K \ ({P} ∪ ρ) for K ̸=Proc
X otherwise

JQKP =Q

J() @ QKP =

{
() if P=Q
⊥ otherwise

JInt @ QKP =

{
Int if P=Q
⊥ otherwise

Jτ1 × τ2KP =

{
⊥ if Jτ1KP = Jτ2KP =⊥
Jτ1KP × Jτ2KP otherwise

Jτ1 + τ2KP =

{
⊥ if Jτ1KP = Jτ2KP =⊥
Jτ1KP + Jτ2KP otherwise

q
τ1 →ρ τ2

y
P =

{
Jτ1KP → Jτ2KP if P∈ ρ or Jτ1KP ̸=⊥ ≠ Jτ2KP
⊥ otherwise

J∀X :: K. τKP =
⊥ if JτKP =⊥ and K=K′ \ ({P} ∪ ρ)

∀X.AmI X ? Jτ[X 7→P]KP & JτKP if K∈ {Proc, Proc \ ρ}
∀X. JτKP otherwise

Jτ1 τ2KP =


⊥ if Jτ1KP = Jτ2KP =⊥
Jτ1KP if Jτ2KP =⊥ and kindof(τ2) =K \ ({P} ∪ ρ)

Jτ2KP if Jτ1KP =⊥
Jτ1KP Jτ2KP otherwise

JλX :: K. τKP =
⊥ if JτKP =⊥ and K=K′ \ ({P} ∪ ρ)

λX.AmI X ? Jτ[X 7→P]KP & JτKP if K∈ {Proc, Proc \ ρ}
λX. JτKP otherwise

Fig. 11. Projection of PolyChorλ Types

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

35

5 The Correctness of Endpoint Projection

We now show that there is a close correspondence between the executions of choreogra-
phies and of their projections. Intuitively, this correspondence states that a choreography
can execute an action if, and only if, its projection can execute the same action, and both
transition to new terms in the same relation. However, this is not completely true: if a chore-
ography M reduces by rule [CaseL], then the result has fewer branches than the network
obtained by performing the corresponding reduction in the projection of C.

In order to capture this we revert to the branching relation (Montesi, 2023; Cruz-Filipe
and Montesi, 2020), defined by M ⊒ N iff M ⊔ N = M. Intuitively, if M ⊒ N, then M offers
the same and possibly more behaviours than N. This notion extends to networks by defining
N ⊒N ′ to mean that, for any role P, N (P)⊒N ′(P).

Using this, we can show that the EPP of a choreography can do all that (com-
pleteness) and only what (soundness) the original choreography does. For traditional
imperative choreographic languages, this correspondence takes the form of one action in
the choreography corresponding to one action in the projected network. We instead have
a correspondence between one action in the choreography and multiple actions in the net-
work due to allowing choreographies to manipulate distributed values in one action such
as in λ x : Int @ Bob× Int @ Alice.M (3 @ Bob,3 @ Alice) where both Bob and Alice
independently take the first part of the pair.

Theorem 5 (Completeness). Given a closed choreography M, if M →D M′, Θ; Γ ⊢ D,
Θ; Γ ⊢ M : τ , and JMK is defined, then there exists network N and choreography M′′ such
that: JMK →+

JDK N and N ⊒ JM′K.

Proof We prove this by structural induction on M →D M′. We take advantage of the fact
that type values project to ⊥ at processes not involved in them, while choreographic values
correspondingly project to ⊥ at processes not involved in their type. See Appendix 3 for
full details. ■

Theorem 6 (Soundness). Given a closed choreography M and a function mapping D,
if Θ; Γ ⊢ M : τ , Θ; Γ ⊢ D, and JMK →∗

JDK N for some network N , then there exist a
choreography M′ and a network N ′ such that: M →∗

D M′, N →∗
JDK N ′, and N ′ ⊒ JM′K.

Proof We prove this by structural induction on M in the accompanying technical report,
taking advantage of the fact that thanks to projecting function names everywhere, a chore-
ography that diverges at one role diverges at every role. See Appendix 4 for full details.
■

From Theorems 3 to 6, we get the following corollary, which states that a network
derived from a well-typed closed choreography can continue to reduce until all roles
contain only local values.

Corollary 1. Given a closed choreography M and a function environment D containing all
the function names of M, if Θ; Γ ⊢ M : T and Θ; Γ ⊢ D, then: whenever JMK →∗

JDK N for

some network N , either there exists P such that N
τP−−→JDK N ′ or N = ∏

P∈ip(M)
P[VP].

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

36

λ HandleHere : (Int @ E→∅ Int @ E)→∅ Bool @ E.

λ x : Int @ E→∅ Int @ E.
LogRequest E S C x

case HandleHere x of

inl y ⇒

 selectE,C here
selectE,S here
comλX ::Proc\{S}. Int@X

E,C (Compute x)

 ;

inr y ⇒ selectE,C atS
selectE,S you

case




comλY ::Proc\{S}. Int@Y→∅Bool@S

E,CcomλY ::Proc\{C}.∀X ::Proc. Int@Y→∅Bool@X
S,E

Λ Z :: Proc. λ z : Int @ S.Authenticate
comλX ::Proc. Int@X

S,Z z


S


AuthKey


of

inl y ⇒


selectS,E go
selectS,C go
comλX ::Proc\{E}. Int@X

S,C

Compute (comλX ::Proc\{C}. Int@X→∅Int@X
E,S x)

 ;

inr y ⇒ selectS,E no
selectS,C no
0 @ C




comλX ::Proc\{C}. Int@X→∅Int@X

C,E task

Fig. 12. Case Study Code

6 Case Study

We now show how our language can be used in an extended example (Figure 12). This
example involves three processes: a client C, an edge computer E, and a server S.
Intuitively, C wants to request that E does some computation. However, E may not have
the resources to perform the computation; in this case, it will forward the request to S.
Whenever S receives a request, then C must first perform an authentication protocol.
Whether or not the task is outsourced to S, S logs the request.

Here we assume the following data:

• A task (of type Int @ C→∅ Int @ C) located at C
• For each of E and S, a local function Compute which executes a task
• An authentication choreography Authenticate between S and a another process Z.

This choreography takes a key AuthKey and checks if the holder of that key is
authorized to run a task on S.

• A key AuthKey for C
• A logging choreography LogRequest involving two roles, provocatively called E

and S. This choreography takes a client, a task, and the result of executing the task
(at C) as input. It then creates a log entry at S.

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

37

• A local function HandleHere, which E uses to determine whether it can handle a
task locally. If HandleHere returns false, then the task must be shipped to S. Unlike
other data, this is represented as input to the choreography.

The choreography begins with C sending the task to E; we call the resulting task x.
(Note that x is the name of the task on E, not the name of the task on C.) E then checks
whether it can handle x using HandleHere. If so, E informs S and C that it is computing
the task. After performing the task, E sends the result to C. It furthermore informs S so
that it knows that it needs to log the task.

If E cannot handle the task, then it again informs C and S. S then makes a decision on
whether C has authorisation to request a task from S. To make this decision, S sends an
authentication protocol to E. Because communications swap the sender and the receiver in
the communicated value, we write this authentication protocol with S playing the role of
the client. The protocol is therefore parameterized on the authenticator. Once E receives
the authentication protocol, it can instantiate the authenticator as S. E finally sends the
(now complete) protocol to C; running this protocol will have C send its key to S, possibly
among other actions required for authentication. If the authentication procedure succeeds,
then S informs E and C of this. E can then send the task to S, who computes it and returns
the result to C. If authentication fails, then S informs E and C of this and the task fails,
resulting in a 0 on C. Either way, we finish the choreography by logging the task and its
result using the function LogRequest.

For S to send an authentication protocol which it is itself involved with requires a bit of
trickery. Usually, we would expect every part of the sent value located at S to be moved
to the receiver (first E and then after another communication C) but obviously that would
mean S cannot be involved. We therefore send an authentication protocol that is parametric
on the authenticator, Z, and only instantiate Z as S after the first communication from S to
E has taken place.

Projecting this protocol to C leads to the following code:

λ HandleHere : ⊥.

λ x : ⊥.
LogRequest E S C ⊥

&E



here : recvE ⊥,

atS :



λ y : ⊥.&S {go : recvS ⊥, no : 0}


recvE sub[S 7→ E]


Λ Z :: Proc.
AmI Z
? λ z : ⊥.Authenticate

recvS ⊥
& sub[S 7→ Z] ⊥


S


AuthKey








sendE task

(6.1)
We see that the second case gets projected as an application of a new abstraction on the

new variable y, with C’s part of the condition as the right side of the application. Since

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

38

the condition contains a delegation, we get some process substitutions representing values
with unknown locations being communicated between other processes. Because of the
AmI in the second branch, none of the substituted processes are ever reached. Therefore,
these substitutions do nothing. Since C is not involved in E’s decision to delegate to S
(or not), we do not see any of the code involved in the decision here. Instead, we get a
straightforward offer as the result of merging the projection of each branch of the involved
conditional.

We now show the projection for E:

λ HandleHere : Int→ Int→ Bool.

λ x : Int→ Int.

LogRequest E S C x
case HandleHere x of

inl y ⇒

 ⊕C here
⊕S here
sendC Compute x

 ;

inr y ⇒⊕C atS
⊕S you

λ y : ⊥.&S {go : send x, no : ⊥}


sendC

recvS


Λ Z :: Proc.AmI Z

? λ z : ⊥.Authenticate
recvZ ⊥

& sub[S 7→ Z] ⊥




S


⊥






recvC ⊥

(6.2)
Note that we treat the second case almost the same as in C, except that E is involved

in both communications of the delegation. Since the condition of the first case is located
at E, it gets projected as a case. Keep in mind that since we model communication as an
exchange, what will actually be executed at S after the delegation takes place is the right
branch of the AmI in the projection of E.

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

39

Finally, we show the projection for S:

λ HandleHere : ⊥.

λ x : ⊥.
LogRequest E S C ⊥

&E



here : ⊥,

you :



case




sub[E 7→C]



sendE Λ Z :: Proc.
AmI Z
? λ z : Int.Authenticate

λ y : Int. y z
& λ z : Int.Authenticate

sendZ z


S


⊥


of

inl y ⇒

 ⊕E go
⊕C go
sendC (Compute (recvE ⊥))

 ;

inr y ⇒⊕E no
⊕C no
⊥






⊥

(6.3)
Here we finally see the projection of what S actually wants C to do in order to authen-

ticate. We also see that in the case where Z gets instantiated as the same process it is
communicating with, which would be S if the protocol did not get communicated before
Z is instantiated, the communication gets replaced by an identity function λ y : Int. y.

7 Related Work

7.1 Choreographies

Choreographies are inspired by the “Alice and Bob” notation for security protocols
by Needham and Schroeder (1978), which included a term for expressing a communica-
tion from a participant to another. The same idea inspired later several graphical notations
for modelling interactions among processes, including sequence diagrams and message
sequence charts (Object Management Group, 2017; International Telecommunication
Union, 1996).

A systematic introduction to theory of choreographic languages and their historical
development can be found in (Montesi, 2023). We recap and discuss relevant recent devel-
opments. The first sophisticated languages for expressing choreographies were invented to
describe interactions between web services. The Web Services Choreography Description
Language (WS-CDL) by The World Wide Web Consortium (W3C) (2004) is a chore-
ographic language which describes the expected observable interactions between web
services from a global point of view (Zongyan et al., 2007). Carbone et al. (2012) later
formalized endpoint projection for a theory of choreographies based on WS-CDL, and
in particular introduced the merging operator (which we adjusted and extended to our

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

40

setting). This inspired more work on choreographies and projection and eventually the
birth of choreographic programming—where choreographies are programs compiled to
executable code—and the first choreographic programming language, Chor (Montesi,
2013). As choreographic programming languages became more complex, Cruz-Filipe and
Montesi (2020) developed a core calculus of choreographies (CC). Montesi (2023) revis-
ited and generalised CC in his text on foundations of choreographic languages. Cruz-Filipe
et al. (2021) then formalized this new version and its properties in the Coq theorem
prover (The Coq development team, 2004). Later, Pohjola et al. (2022) developed a cer-
tified end-to-end compiler from another variation of CC to CakeML by using the HOL
theorem prover.

One of the primary design goals of all of choreographic programming languages is
deadlock-freedom by design (Carbone and Montesi, 2013)—the operational correspon-
dence between the choreography and the distributed network ensures deadlock-freedom
for the network. PolyChorλ achieves this goal. Montesi (2023) discusses restrictions for a
procedural imperative choreographic language in order to obtain a stronger liveness prop-
erty (starvation-freedom). The idea is to prove that processes eventually get involved in
transitions at the choreographic level, and then leverage the correctness of endpoint pro-
jection to obtain the same result about choreography projections. This idea might work
for PolyChorλ as well, but whether and how the technical devices for starvation-freedom
in (Montesi, 2023) can be adapted to PolyChorλ is not clear due to the different nature
of our language (functional instead of imperative). Alternatively, one could adapt static
analyses for lock-freedom—like that in (Kobayashi, 2006)—to choreographies. We leave
explorations of liveness properties other than deadlock-freedom in PolyChorλ to future
work.

The first choreographic language with limited process polymorphism was Procedural
Choreographies (PC) (Cruz-Filipe and Montesi, 2017). In PC, a choreography comes with
an environment of predefined procedures parametric on process names which may be
called by the choreography. These procedures have a number of limitations compared to the
process polymorphism of PolyChorλ : they cannot contain any free processes, they cannot
be partially instantiated, and they are lower-order—that is, they must be defined in the envi-
ronment rather than as part of a larger choreography. These limitations allow the projection
function to know how the procedure will be instantiated, whereas in PolyChorλ we may
need to compute the processes involved first. This has major implications for projection:
in PC, it is easy to tell when projecting a procedure call which processes are involved and
therefore need a local copy of the call. However, PolyChorλ ’s full process polymorphism
allows the function and process names to each be enclosed in a context. While this allows
greater flexibility for programmers, it forces us to project a process-polymorphic functions
to every process and let each process determine at runtime whether it is involved.

Recently, there has been a fair amount of interest in higher-order and functional
programming for choreographies (Giallorenzo et al., 2020; Hirsch and Garg, 2022; Cruz-
Filipe et al., 2022; Shen et al., 2023). The first higher-order choreographic programming
language, Choral (Giallorenzo et al., 2020), is an object-oriented choreographic language
compiled to Java code. Thus, Choral choreographies can depend on other choreographies,
allowing programmers to reuse code. Choral was also the first choreographic language to
treat comτ

P,Q as a first-class function.

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

41

While Choral gave a practical implementation of higher-order choreographies, it did not
establish their theoretical properties. Two different—but independently developed—works
filled this gap, including Chorλ , the basis of PolyChorλ . Chorλ is a functional choreo-
graphic calculus based on the λ -calculus. In this work, we extended Chorλ with type and
process polymorphism and the ability to send non-local values such as choreographies.
Chorλ , and hence PolyChorλ , provides a core language for higher-order choreographies,
thus allowing us to establish their properties. Since the original Chorλ has parametric pro-
cedures like PC and Choral, it lacks PolyChorλ ’s property that a choreography diverging
in one process must diverge in every process. This forces Chorλ to have both a complex
notion of out-of-order execution and a more lax correspondence between actions in the
network and the choreography.

The other work establishing the theoretical properties of higher-order choreographic
programming is Pirouette (Hirsch and Garg, 2022), which is also a functional choreo-
graphic programming language based on simply-typed λ calculus. Unlike Chorλ (and thus
PolyChorλ), Pirouette does not allow processes to send messages written in Pirouette.
Instead, it takes inspiration from lower-order choreographic programming languages in
which (the computations to produce) messages are written in their own separate language.
Like other choreographic languages (Montesi, 2023; Cruz-Filipe et al., 2021), Pirouette’s
design is parametrized by the language for writing messages. Thus, Pirouette can describe
communication patterns between processes that draw from a large swath of languages
for their local computations. Nevertheless, this design means that Pirouette fundamentally
cannot allow programs to send choreographic functions, unlike PolyChorλ .

Moreover, unlike Chorλ and PolyChorλ , Pirouette forces every process to synchro-
nize when applying a function. This allows Pirouette to establish a bisimulation relation
with its network programming language, a result formalized in Coq. This result allows a
traditional—and verified—proof of deadlock-freedom by construction. However, this con-
stant synchronization would be a bottleneck in real-world systems; PolyChorλ ’s choice to
obtain a weaker—but strong-enough—connection between the languages allows it to avoid
this high cost.

7.2 Concurrent Functional Programming

Functional concurrent programming has a long history, starting with attempts to parallelize
executions of functional programs (Burton, 1987). The first language for functional pro-
gramming with communications on channels was Facile (Giacalone et al., 1989) which,
unlike later choreographic languages, had an abstraction over process IDs very similar to
process polymorphism. A more recent work, which more-closely resembles choreographic
programming, is Links (Cooper et al., 2006), with the RPC calculus (Cooper and Wadler,
2009) as its core language. Links and the RPC calculus, like choreographies, allow a pro-
grammer to describe programs where different parts of the computation takes place at
different locations and then compile it to separate code for each location. Interestingly,
though Links has explicit communication, in the RPC calculus the top level does not, and
communications are created only when projecting a function located at a different process.
Moreover, the RPC calculus does not feature multiple threads of computation; instead,
on communication the single thread of computation moves to a new location while other

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

42

locations block. The RPC calculus was later extended with location polymorphism, very
similar to our and Facile’s process polymorphism (Choi et al., 2020). However, as the RPC
calculus only deals with systems of 2 processes, a client and a server, they project a pro-
cess abstraction as a pair, and then the location as picking the correct part of this pair. This
solution creates a simpler network language but is not suitable for a framework with an
arbitrary number of participants such as PolyChorλ . Moreover, the RPC calculus—like
PolyChorλ but unlike traditional choreographic languages—does not have out-of-order
execution at the top level.

Session types were applied to a concurrent functional calculus with asynchronous com-
munication by Gay and Vasconcelos (2010). Though initially this language did not
guarantee deadlock-freedom, only runtime safety, later versions of GV (Wadler, 2012;
Lindley and Morris, 2015) did. Jacobs et al. (2022) extended GV with global types (Honda
et al., 2016), which generalise session types to protocols with multiple participants.
Similarly to choreographic programming, global types offer a global viewpoint on interac-
tions. However, they are intended as specifications and thus cannot express computation.
Global types are typically projected onto local types, which manually-written programs
can later be checked against. In choreographic programming, by contrast, choreographies
are projected directly to programs. Some works mix the approaches (e.g., Scalas et al.,
2017): given a global type, a compiler produces typestate-oriented libraries (Aldrich et al.,
2009) that help the users with following the global type correctly (but not with performing
the right computations at the right time).

Session types have also been used to study global higher-order programming outside of
functional settings. Mostrous and Yoshida (2007) describe the challenges associated with
obtaining subject reduction when sessions can pass other sessions between them. Based on
this, Mostrous and Yoshida (2009) define the higher-order π-Calculus with asynchronous
sessions, a calculus combining elements of the π-calculus and λ -calculus.

Castellani et al. (2020) propose a notion of session types with delegation. They write
delegation by enclosing a part of the global type in brackets. During the execution of such
a part, one process acts on another’s behalf by temporarily taking its name. This means that
they do not need to inform other participants in the delegated computation that delegation
is happening. However, nested delegations can cause deadlocks.

ML5 (Licata and Harper, 2010; Murphy VII et al., 2007) is a functional concurrent pro-
gramming language based on the semantics of modal logic. However, instead of the send
and recv terms of choreographic languages, they have a primitive get[w] M, which makes
another process w evaluate M and return the result. Since M may include other gets, this
construct gives ML5 something resembling PolyChorλ ’s ability to send a full choreogra-
phy. However, the result of evaluating this “choreography” must be at the receiver and then
returned to the sender.

Multitier programming languages, like ScalaLoci (Weisenburger and Salvaneschi,
2020), offer another paradigm for describing global views of distributed systems. Like
Choral, ScalaLoci is built on top of an existing object-oriented language: in this case,
Scala. In ScalaLoci and other tierless languages, an object describes a whole system con-
taining multiple processes and functions. Differently from choreographic programming,
multitier programming does not allow for modelling the intended flow of communications.
Rather, communication happens implicitly through remote function calls and the concrete

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

43

protocol to be followed is largely left to be decided by a runtime middleware. For a more
detailed comparison of choreographic and multitier languages, see the work of Giallorenzo
et al. (2021).

8 Conclusion

In this paper, we presented PolyChorλ , the first higher-order choreographic programming
language with process polymorphism. PolyChorλ has a type and kind system based on
System Fω , but extended such that process names are types of kind Proc. Moreover, we
showed how to obtain a concurrent interpretation of PolyChorλ programs in a process
language by using a new construct corresponding by the ability of a process to know its
identity. We found that this construct was necessary if process variables are able to be
instantiated as the process they are located at, but using a choreographic language abstracts
from this necessity. Our explorations of process polymorphism also allowed PolyChorλ to
describe a communication of a non-local value from P to Q as sending the part of the
message owned by P to Q. These non-local values include full choreographies, creating
a simple and flexible way to describe delegation by communicating a distributed function
describing the delegated task. This innovation required a new notion of communication
as an exchange in which the delegator rather than being left with an empty value after
sending a choreography is left with a function which will allow it to potentially take part
in the delegated task, e.g., by receiving a result at the end.

Process polymorphism fills much of the gap between previous works on the theory of
higher-order choreographies and practical languages. However, there is still more work to
do. For instance, currently PolyChorλ does not support recursive types. Our current results
rely on types normalizing to a type value, which recursive types may not do. System Fω

does not have our restriction of type abstractions only being instantiated with type values.
However, PolyChorλ needs to ensure that communications are only undertaken between
processes, rather than complicated type expressions resulting in processes. Thus, we need
to treat our type system as call-by-name, leading to the restriction above. In order to
support recursive types, we would need to either make endpoint projection capable of
projecting to a possibly-nonterminating description of a process, or limit recursive types
ability to make type computations fail to terminate.

Furthermore, one can imagine allowing processes to send types and process names as
well as values. This would, for example, allow us to program a server to wait to receive
the name of a client which it will have to interact with. Since this form of delegation
is common in practice, understanding how to provide this capability in a choreographic
language, while retaining the guarantees of choreographic programming, would enable
programmers to apply their usual programming patterns to choreographic code.

We project local type despite lacking a typing system for local processes. Our unusual
network communication semantics have made it difficult to define local typing rules for
sends and recvs, and we therefore leave local typing (or alternatively type erasure) as
future work.

Certain, instant, and synchronous communication is convenient for theoretical study, but
such assumptions do not match real-world distributed systems. Cruz-Filipe and Montesi

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

44

(2017) model asynchronous communication in choreographies via runtime terms repre-
senting messages in transit. We could adapt this method to PolyChorλ by having the
communication primitive reduce in two steps: first to a runtime term and then to the deliv-
ered value. However, this extension would be nontrivial, since it is not obvious how to
represent messages in transit when those messages are non-local values such as chore-
ographies. In addition, the way we represent a communication at the local level (swapping
values rather than only moving a value from sender to receiver) might require additional
machinery (e.g., new runtime terms) to capture its asynchronous execution.

We also leave practical implementation of PolyChorλ ’s new features to future work.
This could be achieved by extending Choral (Giallorenzo et al., 2020), the original inspi-
ration for Chorλ . Communication primitives in Choral are user-defined—not fixed by
any middleware or compiler—so it is possible to define new communication abstractions
involving multiple roles. However, we need to manipulate roles at runtime in our local
semantics, while the Choral compiler erases roles when projection code to Java. We may
be able to overcome this issue by reifying roles in projected code or by using reflection.

While these gaps between theory and practice persist, process polymorphism in
PolyChorλ brings us much closer to realistic choreographic languages for distributed
systems. Choreographic programs promise to provide easier and cleaner concurrent and
distributed programming with better guarantees. With higher-order choreographic pro-
gramming and process polymorphism, the fulfilment of that promise is nearly within
reach.

Acknowledgements

Graversen and Montesi were partially supported by Villum Fonden, grant no. 29518.

References

Aldrich, J., Sunshine, J., Saini, D. & Sparks, Z. (2009) Typestate-oriented programming. Companion
to the 24th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2009, October 25-29, 2009, Orlando, Florida, USA.
ACM. pp. 1015–1022.

Burton, F. (1987) Functional programming for concurrent and distributed programming. The
Computer Journal. 30(5), 437–450.

Caires, L. & Pfenning, F. (2010) Session types as intuitionistic linear propositions. Concurrency
Theory (CONCUR).

Carbone, M., Honda, K. & Yoshida, N. (2012) Structured communication-centered programming for
web services. Transactions on Programming Languages and Systems (TOPLAS). 34(2).

Carbone, M. & Montesi, F. (2013) Deadlock-freedom-by-design: Multiparty asynchronous global
programming. Principles of Programming Languages (POPL).

Castagna, G., Dezani-Ciancaglini, M. & Padovani, L. (2012) On global types and multi-party session.
Log. Methods Comput. Sci. 8(1).

Castellani, I., Dezani-Ciancaglini, M., Giannini, P. & Horne, R. (2020) Global types with internal
delegation. TCS. 807, 128–153.

Choi, K., Cheney, J., Fowler, S. & Lindley, S. (2020) A polymorphic RPC calculus. SCP. 197,
102499.

Cooper, E., Lindley, S., Wadler, P. & Yallop, J. (2006) Links: Web programming without tiers. Formal
Methods for Components and Objects (FMCO).

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

45

Cooper, E. E. & Wadler, P. (2009) The RPC calculus. Principles and Practice of Declarative
Programming (PPDP).

Cruz-Filipe, L., Graversen, E., Lugovic, L., Montesi, F. & Peressotti, M. (2022) Functional
choreographic programming. ICTAC.

Cruz-Filipe, L., Graversen, E., Lugovic, L., Montesi, F. & Peressotti, M. (2023) Modular compilation
for higher-order functional choreographies. ECOOP.

Cruz-Filipe, L. & Montesi, F. (2017) On asynchrony and choreographies. Interaction and
Concurrency Experience (ICE).

Cruz-Filipe, L. & Montesi, F. (2017) Procedural choreographic programming. Formal Techniques
for Distributed Objects, Components, and Systems (FORTE).

Cruz-Filipe, L. & Montesi, F. (2020) A core model for choreographic programming. Theor. Comput.
Sci. 802, 38–66.

Cruz-Filipe, L., Montesi, F. & Peressotti, M. (2021) Formalizing a turing-complete choreographic
language in coq. Interactive Theorem Proving (ITP).

Dalla Preda, M., Gabbrielli, M., Giallorenzo, S., Lanese, I. & Mauro, J. (2017) Dynamic choreogra-
phies: Theory and implementation. Logical Methods in Computer Science (LMCS). 13(2).

Dardha, O., Giachino, E. & Sangiorgi, D. (2012) Session types revisited. Principles and Practice of
Declarative Programming (PPDP).

DeYoung, H., Caires, L., Pfenning, F. & Toninho, B. (2012) Cut reduction in linear logic as
asynchronous session-typed communication. Computer Science Logic (CSL).

Gay, S. J. & Vasconcelos, V. T. (2010) Linear type theory for asynchronous session types. Journal of
Functional Programming (JFP). 20(1).

Giacalone, A., Mishra, P. & Prasad, S. (1989) Facile: A symmetric integration of concurrent and
functional programming. International Journal of Parallel Programming. 18, 121–160.

Giallorenzo, S., Montesi, F. & Peressotti, M. (2020) Choreographies as objects.
Giallorenzo, S., Montesi, F., Peressotti, M., Richter, D., Salvaneschi, G. & Weisenburger, P. (2021)

Multiparty languages: The choreographic and multitier cases (pearl). European Conference on
Object-Oriented Programming (ECOOP).

Girard, J.-Y. (1972) Interprétation fonctionnelle et élimination des coupures de l’artihmétique
d’ordre supérieur. Ph.D. thesis. Université Paris 7.

Hirsch, A. K. & Garg, D. (2022) Pirouette: Higher-order typed functional choreographies. Principles
of Programming Languages (POPL).

Honda, K. (1993) Types for dyadic interaction. Concurrency Theory (CONCUR).
Honda, K., Vasconcelos, V. T. & Kubo, M. (1998) Language primitives and type discipline for

structured communication-based programming. European Symposium on Programming (ESOP).
Honda, K., Yoshida, N. & Carbone, M. (2016) Multiparty asyncrhonous session types. Journal of the

ACM. 63(1), 1–67.
International Telecommunication Union. (1996) Recommendation Z.120: Message sequence chart.
Jacobs, J., Balzer, S. & Krebbers, R. (2022) Multiparty GV: functional multiparty session types with

certified deadlock freedom. Proc. ACM Program. Lang. 6(ICFP), 466–495.
Jongmans, S. & van den Bos, P. (2022) A predicate transformer for choreographies - computing

preconditions in choreographic programming. European Symposium on Programming (ESOP).
Kobayashi, N. (2006) A new type system for deadlock-free processes. CONCUR 2006 - Concurrency

Theory, 17th International Conference, CONCUR 2006, Bonn, Germany, August 27-30, 2006,
Proceedings. Springer. pp. 233–247.

Licata, D. R. & Harper, R. (2010) A monadic formalization of ML5. Logical Frameworks and Meta-
Languages: Theory and Practice (LFMTP).

Lindley, S. & Morris, J. (2017) Lightweight functional session types. In Behavioural Types: from
Theory to Tools, Gay, S. & Ravara, A. (eds). River Publishers. chapter 12.

Lindley, S. & Morris, J. G. (2015) A semantics for propositions as sessions. Programming Languages
and Systems.

López, H. A., Nielson, F. & Nielson, H. R. (2016) Enforcing availability in failure-aware com-
municating systems. Formal Techniques for Distributed Objects, Components, and Systems

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

46

(FORTE).
The Coq development team. (2004) The Coq proof assistant reference manual. LogiCal Project.

Version 8.0.
Montesi, F. (2013) Choreographic Programming. Ph.D. thesis. IT University of Copenhagen.
Montesi, F. (2023) Introduction to Choreographies. Cambridge University Press.
Mostrous, D. & Yoshida, N. (2007) Two session typing systems for higher-order mobile processes.

TLCA. Springer. pp. 321–335.
Mostrous, D. & Yoshida, N. (2009) Session-based communication optimisation for higher-order

mobile processes. TLCA. Springer. pp. 203–218.
Murphy VII, T., Crary, K. & Harper, R. (2007) Type-safe distributed programming with ML5.

Trustworthy Global Computer (TGC).
Needham, R. & Schroeder, M. (1978) Using encryption for authentication in large networks of

computers. Commun. ACM. 21(12), 993–999.
Needham, R. M. & Schroeder, M. D. (1978) Using encryption for authentication in large networks

of computers. Communications of the ACM (CACM). 21(12).
Object Management Group. (2017) Unified modelling language, version 2.5.1.
Pohjola, J. Å., Gómez-Londoño, A., Shaker, J. & Norrish, M. (2022) Kalas: A verified, end-to-end

compiler for a choreographic language. 13th International Conference on Interactive Theorem
Proving, ITP 2022, August 7-10, 2022, Haifa, Israel. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. pp. 27:1–27:18.

Scalas, A., Dardha, O., Hu, R. & Yoshida, N. (2017) A linear decomposition of multiparty sessions
for safe distributed programming. 31st European Conference on Object-Oriented Programming,
ECOOP 2017, June 19-23, 2017, Barcelona, Spain. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik. pp. 24:1–24:31.

Scalas, A. & Yoshida, N. (2019) Less is more: Multiparty session types revisited. Principles of
Programming Languages (POPL).

Shen, G., Kashiwa, S. & Kuper, L. (2023) Haschor: Functional choreographic programming for all
(functional pearl). CoRR. abs/2303.00924.

The World Wide Web Consortium (W3C). (2004) Ws choreography model overview. Accessed
January 29,2021.

Wadler, P. (2012) Propositions as sessions. International Conference on Functional Programming
(ICFP).

Weisenburger, P. & Salvaneschi, G. (2020) Implementing a language for distributed systems: Choices
and experiences with type level and macro programming in scala. ASEP. 4(3), 17.

Zongyan, Q., Xiangpeng, Z., Chao, C. & Hongli, Y. (2007) Towards the theoretical foundation of
choreography. The Web Conference (WWW).

1 Full PolyChorλ Typing Rules

[TUNIT]
Θ; Γ ⊢ ν :: Proc

Θ; Γ ⊢ () @ ν : () @ ν
[TINT]

Θ; Γ ⊢ ν :: Proc

Θ; Γ ⊢ n @ ν : Int @ ν

[TAPP]
Θ; Γ ⊢ N : τ1 →ρ τ2 Θ; Γ ⊢ M : τ1

Θ; Γ ⊢ N M : τ2

[TABS]

Θ; Γ ⊢ τ1 :: ∗ Θ; Γ
′ ⊢ ν :: Proc for all ν ∈ ρ

Θ ∩ (ρ ∪ ip(τ1)∪ ip(τ2)∪ ftv(τ1)∪ ftv(τ2)); Γ, x : τ1 ⊢ M : τ2

Θ; Γ ⊢ λ x : τ1.M : τ1 →ρ τ2

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

47

[TSEL]
Θ; Γ ⊢ ν1 :: Proc Θ; Γ ⊢ ν2 :: Proc Θ; Γ ⊢ M : τ

Θ; Γ ⊢ selectν1,ν2 ℓ M : τ

[TCOM]

Θ; Γ ⊢ τ :: Proc⇒∗
Θ; Γ ⊢ ν1 :: Proc \ (ip(τ)∪ ftv(τ)) Θ; Γ ⊢ ν2 :: Proc \ (ip(τ)∪ ftv(τ))

Θ; Γ ⊢ comτ
ν1,ν2

: (τ ν1 →∅ τ ν2)

[TAPPT]
Θ; Γ ⊢ M : ∀X :: K. τ1 Θ; Γ ⊢ τ2 :: K

Θ; Γ ⊢ M τ2 : τ [X 7→ τ2]

[TABST]

Θ
′; Γ

′, X :: K ⊢ M : τ

if ∃K′, ρ.K=K′ \ ρ then Γ
′ = (Γ + X) & ρ \ X else Γ

′ = Γ + X
if K=Proc or ∃ρ.K=Proc \ ρ then Θ

′ = Θ, X else Θ
′ = Θ

Θ; Γ ⊢ Λ X :: K.M : ∀X :: K. τ

[TEQ]
Θ; Γ ⊢ M : τ1 τ1 ≡ τ2 Θ; Γ ⊢ τ2 :: ∗

Θ; Γ ⊢ M : τ2

[TDEFS]
∀ f ∈ domain(D). f : τ ∈ Γ ∧ /0; Γ ⊢ D(f) : τ

Θ; Γ ⊢ D
[TVAR]

x : τ ∈ Γ

Θ; Σ; Γ ⊢ x : τ

[TCASE]
Γ ⊢ N : τ1 + τ2 Θ; Γ, x : T1 ⊢ M′ : τ Θ; Γ, x′ : T2 ⊢ M′′ : τ

Θ; Γ ⊢ case N of inl x ⇒ M′; inr x′ ⇒ M′′ : τ

[TFUN]
f : τ ∈ Γ

Θ; Γ ⊢ f : τ
[TPAIR]

Θ; Γ ⊢ M : τ1 Θ; Γ ⊢ N : τ2

Θ; Γ ⊢ (M,N) : τ1 × τ2

[TPROJ1]
Θ; Γ ⊢ M : τ1 × τ2

Θ; Γ ⊢ fst M : τ1
[TPROJ2]

Θ; Γ ⊢ M : τ1 × τ2

Θ; Γ ⊢ snd M : τ2

[TINL]
Θ; Σ; Γ ⊢ M : τ1

Θ; Σ; Γ ⊢ inlM τ2 : τ1 + τ2
[TINR]

Θ; Σ; Γ ⊢ M : τ2

Θ; Σ; Γ ⊢ inrM τ2 : τ1 + τ2

2 Full PolyChorλ Operational Semantics

[APPABS]
(λ x : τ.M)V →D M[x 7→V]

[APP1]
M1 →D M2

M1 N →D M2 N
[APP2]

N1 →D N2

V N1 →D V N2

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

2206

2207

2208

48

[APPTABS]
τ ≡ ν

(Λ X :: K.M) τ →D M[X 7→ ν]
[MTAPP1]

M1 →D M2

M1 τ →D M2 τ

[MTAPP2]
τ1 →D τ2

V τ1 →D V τ2

[INL]
M1 →D M2

inlτ M1 →D inlτ M2
[INL]

M1 →D M2

inrτ M1 →D inrτ M2

[CASE]
N1 →D N2

case N1 of inl x ⇒ M1; inr y ⇒ M2 →D case N2 of inl x ⇒ M1; inr y ⇒ M2

[CASEL]
case inlτ V of inl x ⇒ M1; inr y ⇒ M2 →D M1[x 7→V]

[CASER]
case inrτ V of inl x ⇒ M1; inr y ⇒ M2 →D M1[x 7→V]

[PAIR1]
M1 →D M2

(M1,N)→D (M2,N)
[PAIR2]

N1 →D N2

(V ,N1)→D (V ,N2)

[FST]
M1 →D M2

fst M1 →D fst M2
[SND]

M1 →D M2

snd M1 →D snd M2

[PROJ1]
fst (V1,V2)→D V1

[PROJ2]
snd (V1,V2)→D V2

[DEF]
f →D D(f)

[SEL]
selectP,Q ℓ M →D M

[COM]
comτ

P,Q V →D V [P 7→Q]

3 Proof of Theorem 5

In the foregoing we use L to denote local expressions and U to denote local values in order
to make the proofs more readable, as we will be switching back and forth between layers
a lot.

Before we can prove completeness, we need a few lemmas. First, we show that
choreographic values always project to local values.

Lemma 3. For any choreographic value V and process P, if Θ; Γ ⊢V : τ then JV KP is
either a value or undefined.

Proof Straightforward from the projection rules. ■

We then prove the same for type values.

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

49

Lemma 4. Given a type value ν , if Θ; Γ ⊢ ν :: K then for any process P in ip(ν), JνKP = ν .

Proof Straightforward from the projection rules. ■

We then show that type values are projected to ⊥ at uninvolved processes.

Lemma 5. Given a type value ν ̸=P, for any process Q /∈ ip(ν), JνKQ =⊥.

Proof Straightforward from induction on ν . ■

And similarly, we show that choreographic values project to ⊥ at processes not involved
in their type.

Lemma 6. Given a value V , if Θ; Γ ⊢V : τ then for any process P /∈ ip(τ), we have JV KP =

⊥ or JV KP is undefined.

Proof Follows from Lemmas 3 and 5 and the projection rules. ■

Finally, we show that equivalent types are projected to equivalent local types.

Lemma 7. Given a closed type τ , if τ ≡ τ ′ and Θ; Γ ⊢ τ :: K, then for any process P,
JτKP ≡P Jτ ′KP.

Proof We prove this by structural induction on τ ≡ τ ′. All but one case follow by simple
induction.

The one interesting case is if τ = λX.Kτ1 ν and τ ′ = τ1[X := ν]. Then (1) if K=

K′ \ ({R} ∪ ρ) and Jτ1KP =⊥, we have JτKP = Jτ ′KP =⊥. (2) If K ∈ {Proc,Proc \ ρ}
then JτKP = (∀X.AmI X ? Jτ1[X :=P]KP & Jτ1KP) JνKP and Jτ ′KP = Jτ1[X := ν]KP. Since
τ is a closed type and Θ; Γ ⊢ ν :: K, ν must be a process. If ν =P then obviously
(∀X.AmI X ? Jτ1[X :=P]KP & Jτ1KP) JνKP ≡P Jτ1[X := ν]KP. If ν ̸=P then (∀X.AmI X ?
Jτ1[X :=P]KP & Jτ1KP) JνKP ≡P Jτ1KP [X := JνKP], but since ν is a process Q, JνKP =Q
and JXKP = X , and therefore we get JτKP ≡P Jτ ′KP. And (3) otherwise we have JτKP =

(λX. Jτ1KP) JνKP and Jτ ′KP = Jτ1KP[X := JνKP]. We therefore get JτKP ≡P Jτ ′KP. ■

We also need to prove that performing a substitution before and after projection yield
the same result.

Lemma 8. Given a choreography M with a free variable x, a value V , and a type τ

such that Θ; Γ ⊢ λ x : τ.M V : τ ′ and Jλ x : τ.M V K is defined, we get JM[x :=V]KP =

JMKP [x := JV KP].

Proof If τ =⊥ then by definition JxKP =⊥ and by Lemma 6, JV KP =⊥. If τ ̸=⊥
then JxKP = x and since we use α-conversion when substituting, we can guarantee that
typeof(V) = τ anywhere it gets substituted into M, meaning the projection will always
be the same as it does not depend on context, only on syntax and type. We therefore get
JM[x :=V]KP = JMKP [x := JV KP]. ■

We are now ready to prove completeness.

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

50

Proof [Proof of Theorem 5] We prove this by structural induction on M →D M′.

• Assume M = (λ x : τ.N) V and M′ = N[x :=V]. Then for any process P such
that JNKP ̸=⊥ or JτKP ̸=⊥, we have JMKP = (λ x : JτKP . JNKP) JV KP and
JM′KP = JNKP[x := JV KP], and for any other P′, we have P′ /∈ ip(typeof(V))

and therefore JMKP′ = JM′KP′ =⊥. We therefore get P[JMKP]
τ−→JDK JM′KP

for all P ∈ ip(typeof(λ x : τ.N)) and define N = ∏
P∈ip(typeof(λ x:τ.N))

P[JM′KP] |

∏
P′ /∈ip(typeof((λ x:τ.N))

P′[⊥] and the result follows.

• Assume M = (Λ X :: K.N) τ , τ ≡ ν , and M′ = N[X := ν]. Then if K ∈ {P, P \ ρ},
for any process P, JMKP = (Λ X :: K.AmI X ? JN[t :=P]KP & JNKP) JτKP and the
result follows Lemmas 4 and 7, and Rules [NBabs], [NIamr], and [NIaml].
If K /∈ {Proc,Proc \ ρ} then for any process P such that JNKP =⊥ and K=

K′ \ ({P} ∪ ρ), we have JMKP = JM′KP =⊥, for any other P′ we have JMKP′ =

(Λ X. JNKP′) JτKP′ and JM′KP′ = JNKP′ [X := JνKP′]. We therefore get P[JMKP]→∗
JDK

JM′KP for all P and the result follows.
• Assume M = N M′′, M′ = N′ M′′, and N →D N′. Then for any process P such

that JNKP = JM′′KP =⊥, by induction we have JN′KP =⊥, and therefore JMKP =

JM′KP =⊥. For any process P′ such that P′ ∈ ip(typeof(N)) or JNKP′ ̸=⊥ ≠

JM′′KP′ , JMKP′ = JNKP′ JM′′KP′ and JM′KP′ = JN′KP′ JM′′KP′ . For any other pro-
cess P′′ such that JNKP′′ =⊥, by induction we get JN′KP′′ =⊥ and therefore
JMKP′′ = JM′KP′′ = JM′′KP′′ . For any other process P′′′ such that JM′′KP′′′ =⊥, we get
JMKP′′′ = JNKP′′′ and JM′KP′′′ = JN′KP′′′ . And by induction JNK→∗

JDK NN and NN ⊒

JN′K. For any process P we therefore get JNKP
µ0−→JDK

µ1−→JDK . . . LP for LP ⊒ JN′KP

for some sequences of transitions
µ0−→JDK

µ1−→JDK . . . , and from the network semantics
we get

JMK→∗
JDK

∏
JNKP=JM′′KP=⊥

P[⊥] | ∏
P′∈ip(typeof(N)) or JNKP′ ̸=⊥̸=JM′′KP′

P′[LP′ JM′′KP′]

| ∏
JMKP′′=JM′′KP′′

P′′[JM′′KP′′] | ∏
JMKP′′′=JNKP′′′

P′′[LP′′]
=N

and M →D N′ M′′. And since JNK→∗
JDK N ′ and JN′K→∗

JDK N ′
N , we know these

sequences of transitions can synchronise when necessary, and if JNKP′′′′ ̸= JN′KP′′′′ =

⊥ then we can do the extra application to get rid of this unit.
• Assume M =V N, M′ =V N′, and N →D N′. This is similar to the previous case,

using Lemma 3 to ensure every process can use Rule [NApp2].
• Assume M = case N of inl x ⇒ N′; inr x′ ⇒ N′′, M′ = case M′′ of inl x ⇒

N′; inr x ⇒ N′′, and N →D M′′. Then for any process P such that P∈
ip(typeof(N)), we have JMKP = case JNKP of inl x ⇒ JN′KP; inr x′ ⇒ JN′′KP and
JM′KP = case JM′′KP of inl x ⇒ JN′KP; inr x′ ⇒ JN′′KP. For any other process P′

such that JNKP′ = JN′KP′ = JN′′KP′ =⊥, by induction we get JM′′KP′ =⊥, and there-
fore JMKP′ = JM′KP′ =⊥. For any other process P′′ such that JNKP′′ =⊥, we get
JMKP′′ = JM′KP′′ = JN′KP′′ ⊔ JN′′KP′′ . For any other processes P′′′ such that JN′KP′′′ =

JN′′KP′′′ =⊥, we have JMKP′′′ = JNKP′′′ and JM′KP′′′ = JM′′KP′′′ . For any other pro-
cess P′′′′, we have JMKP′′′′ = (λx : ⊥.JN′KP′′′′ ⊔ JN′′KP′′′′) JNKP′′′′ and JM′KP′′′′ =

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

51

(λx.JN′KP′′′′ ⊔ JN′′KP′′′′) JM′′KP′′′′ for x /∈ fv(N′)∪ fv(N′′). The rest follows by simple
induction similar to the second case.

• Assume M = case inlτ V of inl x ⇒ N; inr x′ ⇒ N′ and M′ = N[x :=V]. Then for
any process P∈ ip(typeof(inlτ V)), we have JMKP = case inlJτKP

JV KP of inl x ⇒
JNKP; inr x′ ⇒ JN′KP and JM′KP = JN[x := JV KP]KP. By Lemma 6,
JN[x := JV KP]KP = JNKP[x := JV KP]. For any other process P′ /∈ ip(typeof(inlτ V)),q
inlV τP′y

=
⊥, and therefore JMKP′ = JNKP′ ⊔ JN′KP′ ⊒ JNKP′ = JM′KP′ . The result

follows.
• Assume M = case inrτ V of inl x ⇒ N; inr x′ ⇒ N′ and M′ = N′[x′ :=V]. This

case is similar to the previous.
• Assume M = comτ

P,Q V and M′ =V [Q :=P]. Then if Q ̸=P, JMKP = recvQ JV KP,
JM′KP = JV [Q :=P]KP = JV KQ[Q :=P], JMKQ = sendP JV KQ, JM′KQ = JV [Q :=
P]KQ = JV KP[Q :=P], and for any P′ such that JτKP′ ̸=⊥, we have JMKP′ =

sub[Q 7→P] JV KP′ and JM′KP′ = JV [Q :=P]KP′ = JV KP′ [Q :=P], and for any other

P′′, JMKP′′ = JM′KP′′ =⊥. We therefore get JMKP
recvQJVKQ[Q:=P] JVKP−−−−−−−−−−−−−−→JDK JM′KP,

JMKQ
sendPJVKQ JVKP[Q:=P]
−−−−−−−−−−−−−−→JDK JM′KQ, and JMKP′

τ−→JDK JM′KP′ . We define N =

JM′K and the result follows. If Q=P, then JMKP = (λx.x) JV KP and JM′KP = JV KP
and N = JM′K and the result follows.

• Assume M = selectQ,P ℓ M′. Then JMKQ =⊕P ℓ JM′KQ, JMKP = &Q {ℓ : JM′KP},

and for any P′ /∈ {Q,P}, JMKP′ = JM′KP′ . We therefore get JMK
τP,Q−−→JDK JMK \

{P,Q} |P[JM′KP] |Q[JM′KQ] and the result follows.
• Assume M = (N,N′), N →D N′′, and M′ = (N′′,N′). Then the result follows from

simple induction.
• Assume M = (V ,N), N →D N′, and M′ = (V ,N′). Then the result follows from

simple induction.
• Assume M = fst (V ,V ′) and M′ =V . Then for any process P such that JV KP ̸=
⊥ or JV KP ̸=⊥, JMKP = fst (JM′KP,JV ′KP) and for any other process P′ /∈
ip(typeof((M′,V ′)), we have JMKP′ =⊥ and JM′KP′ =⊥. We define N = JM′K and
the result follows.

• Assume M = snd (V ,V ′) and M′ =V ′. Then the case is similar to the previous.
• Assume M = f and M′ = D(f). Then the result follows from the definition of JDK.

■

4 Proof of Theorem 6

As with completeness, we need some ancillary lemmas before we can prove soundness.
For this, we need a notion of removing processes from a network.

Definition 3. Given a network N = ∏
P∈ρ

P[LP], we have N \ ρ ′ = ∏
P∈(ρ\ρ ′)

P[LP].

First we show that actions in a network do not affect the roles not mentioned in the
transition label.

2347

2348

2349

2350

2351

2352

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

52

Lemma 9. For any process P and network N , if N
τP−−→d N ′ and P /∈P then N (P) =

N ′(P).

Proof Straightforward from the network semantics. ■

Then we show that removing processes from a network does not prevent it from
performing actions involving different processes.

Lemma 10. For any set of processes ρ and network N , if N
τP−−→N ′ and P ∩ ρ = /0

then N \ ρ
τP−−→d N ′ \ ρ .

Proof Straightforward from the network semantics. ■

We finally show that if the projection of a choreographic type is equivalent to a local type
value, then the original choreographic type is equivalent to a choreographic type value.

Lemma 11. Given a closed type τ1 and process P, if Θ; Γ ⊢ τ1 :: K and Jτ1KP ≡P ν , then
there exist a type ν ′ such that: τ1 ≡ ν ′ and Jν ′KP = ν .

Proof We prove this by structural induction on τ1. All but one case follows from simple
induction.

Assume τ1 = τ2 τ3. Then if Jτ2KP = Jτ2KP =⊥, we have Jτ1KP =⊥ and therefore ν =

⊥= ν ′. Otherwise, if Jτ3KP′ =⊥ and kindof(τ3) =K \ ({P} ∪ ρ), we get Jτ1KP = Jτ2KP
and the result follows from induction. Otherwise if Jτ2KP =⊥, we get Jτ1KP = Jτ3KP and
the result follows from induction. Otherwise, we get JτKP = Jτ2KP Jτ3KP. By induction,
Jτ2KP ≡P ν2 and there exists ν ′

2 such that τ2 ≡ ν ′
2 and Jν ′

2KP = ν2 and Jτ3KP ≡P ν3 and
there exists ν ′

3 such that τ3 ≡ ν ′
3 and Jν ′

3KP = ν3. Because τ1 is kindable, we have a kind
K′ such that Θ; Γ ⊢ τ2 :: K′ ⇒K and Θ; Γ ⊢ τ3 :: K′. This means that ν ′

2 = λX :: K′. ν4 and
if K′ ∈ {Proc,Proc \ ρ} then ν2 = λX.AmI X ? Jν4[X :=P]KP & Jν4KP, otherwise ν2 =

λX. Jν4KP. We then get ν ≡P Jν ′
4[X := ν3]KP and ν ′ ≡ ν ′

4[X := ν ′
3], and since X and ν ′

3
are both base types, so are Jν ′

4[X := ν3]KP and ν ′
4[X := ν ′

3]. ■

We are then ready to prove soundness.

Proof [Proof of Theorem 6] We prove this by structural induction on M.

• Assume M =V . Then for any process P, JMKP =U , and therefore JMK ̸ τP−−→.
• Assume M = N1 N2. Then for any process P such that JN1KP = JN2KP =⊥, we

have JMKP =⊥. For any process P′ such that P′ ∈ ip(typeof(N1)) or JN1KP′ ̸=⊥ ≠

JN2KP′ , JMKP′ = JN1KP′ JN2KP′ . For any other process P′′ such that JN2KP′′ =⊥, we
get JMKP′′ = JN1KP′′ . For any other process P′′′, we get JMKP′′′ = JN2KP′′′ . We then
have 2 cases.

– Assume N2 =V . Then JN2KP =U by Lemma 3, and for any P′ such that
P′ /∈ ip(typeof(N2))⊆ ip(typeof(N1)), by Lemma 6, JN2KP′ =⊥ and therefore
JMKP′ = JN1KP′ , and we have 5 cases.

2393

2394

2395

2396

2397

2398

2399

2400

2401

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

53

* Assume N1 = λ x : τ.N3. Then for any process P such that JN3KP ̸=⊥ or
JτKP ̸=⊥, JN1KP = λ x : JτKP . JN3KP. And for any other process, JN1KP =⊥.
The only transition available at any process, would then use Rule [NAbsApp].
This means for any transition M

τP−−→, there exists P′′ such that P =P′′.
We then get JMK

τP−−→ JMK \ {P′′} |P′′[JN3KP′′ [x := JN2KP′′]]. We say that M′ =

N3[x := N2] and the result follows from using Rule [NAbsApp] in every
process P such that JMKP ̸=⊥ and induction.

* Assume N1 = comτ

Q,P. Then if Q ̸=P, JMKQ = sendP JN2KQ, JMKP =

recvP ⊥, for any P′ ∈ ip(τ), JMKP′ = sub[Q 7→P] JV KP′ , and for any other
process P′′, JN1KP′′ =⊥= JMKP′′ . And if Q=P then JN1KP = λx.x.
If P =Q,P then N = JMK \ {Q,P} |Q[JN2KP [Q :=P]] |P[JN2KQ[Q :=P]].

Because JN2KP =⊥ and JN2KQ =U , N2 =V . Therefore M P−→D V [Q :=P] and
for any P′ ∈ ip(τ), by Rule [NSub], N (P′)

τ−→JDK JV [Q :=P]KP′ and the result
follows from induction.
If P =P then either Q=P or JN1KP = sub[Q 7→P]. If Q=P then N =

JMK \ {P} |P[JN2KP] and the rest is similar to above. If JN1KP = sub[Q 7→P]
then the case is similar to one of the other two.

* Otherwise, N1 ̸=V and either P =P or P =P,Q.
If P =P then either JN1KP

τ−→JDKP
L and P ∈ ip(typeof(N1)), N = JMK \

{P} |P[L JN2KP]. We therefore have JN1K
τP−→JDKP

JN1K \ {P} |P[L], and by
induction, N1 →∗

D N′
1 such that JN1K \ {P} |P[L]→∗

D N1 ⊒ JN′
1K. Since all

these transitions can be propagated past N2 in the network and JN2KP′ in any
process P′ involved, we get the result for M′ = N′

1 N2.
If P =P,Q then the case is similar.

– If N2 ̸=V then we have 2 cases.

* If P =P then either JN1KP
τ−→JDKP

L or JN1KP =U and JN2KP
τ−→JDKP

L and the
case is similar to the previous.

* If P =Q,P then there exists U such that either JN1KQ
sendP U−−−−−→JDKQ

LQ or JN2KQ
sendP U−−−−−→JDKQ

LQ and JN1KP
recvQ U [Q:=P]
−−−−−−−−−→JDKP

LP or

JN2KP
recvQ U [Q:=P]
−−−−−−−−−→JDKP

LP.

If JN1KQ
sendP U−−−−−→JDKQ

LQ then JN1KQ ̸=U ′ and therefore

JN1KP
recvQ U [Q:=P]
−−−−−−−−−→JDKP

LP and the case is similar to the pre-

vious. If JN2KQ
sendP U−−−−−→JDKQ

LQ then JN1KQ =U ′, and therefore

JN2KP
recvQ U [Q:=P]
−−−−−−−−−→JDKP

LP and the case is similar to the previous.
• Assume M = N τ . Then for any process P such that JNKP = JτKP =⊥, we have

JMKP =⊥. For any process P′ such that JτKP′ =⊥ and kindof(τ) =K \ ({P} ∪ ρ),
JMKP′ = JNKP′ . For any other process P′′ such that JτKP′′ =⊥, we get JMKP′′ =

JNKP′′ . For any other process P′′′, we get JMKP′′′ = JNKP′′′ JτKP′′′ . This case is
similar to the previous unless N = Λ X :: K.N′.
If N = Λ X :: K.N′ and τ ≡ ν then we have two cases. Either K ∈ {Proc,Proc \
ρ} or not. If K∈ {Proc,Proc \ ρ} then for any P′, JMKP′ = Λ X.AmI X ?

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

54

q
N′[t :=P′]

y
P & JN′KP′ JνKP′ . As JνKP′ =P for some P, the only available tran-

sition is using Rule [NBabs], and we therefore get P =P′′ for some P′′ and
N = JMK \ {P′′} |P′′[AmI P ?

q
N′[X :=P′′]

y
P′′ & JN′KP′′]. We then define M′ =

N′[X := ν] and see that the result follows form using Rules [NIamr] and [NProam]
on P′′ if P′′ =P and otherwise using Rules [NIaml] and [NProam], at all other
processes using Rule [NBAbs] and then either Rules [NIamr] and [NProam] or
Rules [NIaml] and [NProam] and the result follows from induction.
If K /∈ {Proc,Proc \ ρ} then the case is similar to N1 = λ X : τ.N3 above.

• Assume M = fst N. Then either N ̸=V and the result follows from induction, or
N = (V ,V ′) and for any process P ∈ ip(typeof((V ,V ′))), JMKP = fst (JV KP,JV ′KP)

and for any other process P′ /∈ ip(typeof((V ,V ′)), by Theorem 6 we have JMKP′ =

JNKP′ =⊥, and therefore JMKP′ ̸→JDKP′
.

If P =P∈ ip(typeof((V ,V ′))) then N = JMK \ {P} |P[JV KP] and M
τP−−→D V . The

result follows by use of Rule [NProj1] and Theorem 6 and induction.
• Assume N1 = snd N2. This case is similar to the previous.
• Assume M = (M1,M2). Then the result follows from simple induction.
• Assume M = case N of inl x ⇒ N′; inr x′ ⇒ N′′. Then for any process P such that

P∈ ip(typeof(N)), we have JMKP = case JNKP of inl x ⇒ JN′KP; inr x′ ⇒ JN′′KP.
For any other process P′ such that JNKP′ = JN′KP′ = JN′′KP′ =⊥, JMKP′ =⊥. For
any other process P′′ such that JNKP′′ =⊥, we get JMKP′′ = JN′KP′′ ⊔ JN′′KP′′ . For
any other processes P′′′ such that JN′KP′′′ = JN′′KP′′′ =⊥, we have JMKP′′′ = JNKP′′′ .
For any other process P′′′′, we have JMKP′′′′ = (λx : ⊥.JN′KP′′′′ ⊔ JN′′KP′′′′) JNKP′′′′ .
We have two cases.

– Assume P =P∈ ip(typeof(N)). Then we have three cases.

* Assume N = inlτ V . Then JNKP = inlJτKP
JV KP and N = JMK \ {P} |

P[JN′[x := JV KP]KP]. We define M′ = N′ and since JN′KP′ ⊒ JN′KP′ ⊔ JN′′KP′

the result follows from using Rules [NAbsApp] and [NCasel] and induction.

* Assume N = inrτ V . Then the case is similar to the previous.

* Otherwise, we use Rule [NCase] and we have a transition JNKP
τ−→JDKP

L such
that

N = JMK \ {P} |P[case L of inl x ⇒ JN′KP; inr x′ ⇒ JN′′KP]

and the result follows from induction similar to the last application case.
– Assume P =Q,P. Then the logic is similar to the third subcases of the previous

case.
• Assume M = selectQ,P ℓ N. This is similar to the N1 = comτ

Q,P case above.
• Assume M = f . Then for any process P, JMKP = f . We therefore have some process

P such that P =P and N = (JMK \P) |P[JDK(f)]. We then define the required
choreography M′ = D(f) and network N ′ = JM′K and the result follows.

■

	Introduction
	System Model
	Processes
	Communication
	Local Programs

	The Polymorphic Chor Language
	Typing
	Kinding
	Operational Semantics

	Endpoint Projection
	Projection

	The Correctness of Endpoint Projection
	Case Study
	Related Work
	Choreographies
	Concurrent Functional Programming

	Conclusion
	Full Typing Rules
	Full Operational Semantics
	Proof of thm:ChorToNet
	Proof of thm:NetToChor

