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Abstract—A formal belief semantics is given for a constructive,
first-order authorization logic. The belief semantics is proved to
subsume a standard Kripke semantics. The belief semantics yields
a direct representation of principals’ beliefs, without resorting to
the technical machinery used in Kripke semantics. A proof system
is given for the logic; that system is proved sound with respect
to the belief and Kripke semantics. The soundness proof for the
Kripke semantics is mechanized in Coq.

I. INTRODUCTION

Authorization logics are used in computer security to reason
about whether principals—computer or human agents—are
permitted to take actions in computer systems. The distin-
guishing feature of authorization logics is their use of a “says”
connective: intuitively, if principal p believes that formula φ
holds, then formula p says φ holds. Access control decisions
can then be made by reasoning about (i) the beliefs of
principals, (ii) how those beliefs can be combined to derive
logical consequences, and (iii) whether those consequences
entail guard formulas, which must hold for actions to be
permitted.

Many systems that employ authorization logics have been
proposed [1]–[18], but few authorization logics have been
given a formal semantics [19]–[22]. Though semantics might
not be immediately necessary to deploy authorization logics
in real systems,
• semantics yield insight into the meaning of formulas, and
• semantics make it possible to prove the soundness of

a proof system—which might require proof rules and
axioms to be corrected, if there are any lurking errors
in the proof system.

For the sake of security, it is worthwhile to carry out such
soundness proofs. Given only a proof system, we must trust
that the proof system is correct. But given a proof system and
a soundness proof, which shows that any provable formula
is semantically valid, we now have evidence that the proof
system is correct, hence trustworthy. The soundness proof thus
relocates trust from the proof system to the proof itself—as
well as to the semantics, which ideally offers more intuition
about formulas than the proof system itself.

The intuitive basis for semantics of epistemic logics is usu-
ally that of possible worlds, as used by Kripke [23]. Semantics
that use this technique (henceforth, Kripke semantics) posit an
indexed accessibility relation on possible worlds. If at world
w, principal p considers world w′ to be possible, then (w,w′)
is in p’s accessibility relation. We denote this as w ≤p w′.
Authorization logics sometimes use Kripke semantics to give

meaning to the says connective: semantically, p says φ holds
in a world w iff for all worlds w′ such that w ≤p w′, formula
φ holds in world w′. Hence a principal says φ iff φ holds in
all worlds the principal considers possible.1

The use of Kripke semantics in authorization logic thus
requires installation of possible worlds and accessibility re-
lations into the semantics, solely to give meaning to says.
Unfortunately, this approach does not seem to correspond
to how principals reason in real-world systems. Rather than
explicitly considering possible worlds and relations between
them, principals typically begin with some set of base formulas
they believe to hold—perhaps because they have received
digitally signed messages encoding those formulas, or perhaps
because they invoke system calls that return information—then
proceed to reason from those formulas. So could we instead
stipulate that each principal p have a set of beliefs ω(p), called
the worldview of p, such that p says φ holds iff φ ∈ ω(p)?
That is, a principal says φ iff φ is in the principal’s worldview?

This paper answers that question in the affirmative. We
give two semantics for an authorization logic: one semantics
(§III) uses Kripke models, the other (§II) introduces belief
models, which employ worldviews to interpret says.2 We show
(§IV) that belief models subsume Kripke models, in the sense
that every Kripke model can be transformed into a belief
model. If a formula is valid in the Kripke model, then it
is also valid in the belief model. As a result, authorization
logics can now eliminate the technical machinery of Kripke
semantics and instead use belief semantics. This semantics
potentially increases the trustworthiness of an authorization
system, because the semantics is closer to how principals
reason in real systems.

The particular logical system we introduce in this paper
is FOCAL, First-Order Constructive Authorization Logic.
FOCAL extends a well-known authorization logic, cut-down
dependency core calculus (CDD) [28], from a propositional
language to a language with first-order functions and relations
on system state. Functions and relations are essential for
reasoning about authorization in a real operating system—
as exemplified in Nexus Authorization Logic (NAL) [29], of
which FOCAL is a fragment. FOCAL also simplifies NAL by
reducing from second-order to first-order quantification, with
no important loss in expressivity.

1The says connective is, therefore, closely related to the modal necessity
operator � [24] and the epistemic knowledge operator K [25].

2Our belief models are an instance of the syntactic approach to modeling
knowledge [25]–[27].



Having given two semantics for FOCAL, we then turn to
the problem of proving soundness. It turns out that the NAL
proof system is unsound w.r.t. the semantics presented here:
NAL allows derivation of a formula our semantics considers
invalid. A priori, the fault could lie with our semantics or
with NAL’s proof system. However, our examination of the
formula (cf. §VI-D) suggests that if the logic is to be used in
a distributed setting without globally-agreed upon state, then
the proof system should not allow the formula to be derived.
So if NAL is to be used in such settings, its proof system
needs to be corrected.

NAL extends CDD, so CDD is also unsound w.r.t. our
semantics. However, CDD has been proved sound w.r.t. a
different semantics [21]. This seeming discrepancy—sound
vs. unsound—illuminates a difference between how NAL and
CDD interpret says. We discuss that difference in §VI-E.

To achieve soundness for FOCAL, we develop a revised
proof system; the key technical change is adopting localized
hypotheses in the proof rules. In §V, we prove the soundness
of our proof system with respect to both our belief and Kripke
semantics. This result yields the first soundness proof w.r.t.
belief semantics for an authorization logic.

Having relocated trust into the soundness proof, we then
seek a means to increase the trustworthiness of that proof. Ac-
cordingly, we formalize the syntax, proof system, and Kripke
semantics in the Coq proof assistant,3 and we mechanize the
proof of soundness. That mechanization relocates trust from
our soundness proof to the Coq proof system, which is well-
studied and is the basis of many other formalizations. The full
Coq formalization (including the formalization of FOCALE,
discussed next) contains about 4,000 lines of code and required
about four person-months for us, as Coq neophytes, to develop.
The mechanization effort was worthwhile in that it exposed
various bugs in our semantics that might otherwise have
remained unnoticed.

Finally, we extend FOCAL to include the advanced features
found in NAL: restricted delegation, subprincipals, and inten-
sional group principals (cf. §VI). These features, along with
first-order functions and relations, can be used to implement
the authorization system of an operating system built on a
trusted platform module [18], and they enable rich reasoning
about axiomatic, synthetic, and analytic bases for authorization
of actions [29]. We call our extended logic FOCALE; it is quite
similar to NAL, though there are some deliberate differences
(cf. §VI). We give belief and Kripke semantics for FOCALE,
give a proof system for FOCALE, and show the soundness of
the proof system w.r.t. the belief semantics. We also show
soundness w.r.t. the Kripke semantics and mechanize that
proof in Coq. As a result, we obtain the first soundness proof
for an authorization logic with intensional group principals.

We proceed as follows. §II presents FOCAL and its belief
semantics. §III gives a Kripke semantics for FOCAL. §IV
proves the relationship of the belief semantics to the Kripke
semantics. §V gives a proof system for FOCAL and proves its

3http://coq.inria.fr

τ ::= x | f(τ, . . . , τ)

φ ::= true | false | r(τ, . . . , τ) | τ1 = τ2

| φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 ⇒ φ2 | ¬φ
| (∀x : φ) | (∃x : φ)

| τ says φ | τ1 speaksfor τ2

Fig. 1. Syntax of FOCAL

soundness w.r.t. the Kripke semantics. §VI develops FOCALE
by showing how to extend FOCAL’s semantics and proof
system to handle NAL’s advanced features. §VII discusses
related work, and §VIII concludes. All proofs appear in ap-
pendix A. Some familiarity with epistemic logics, constructive
logics, and their Kripke semantics is assumed. Readers who
seek background in these areas can consult standard references
(e.g., [25], [30]).

II. BELIEF SEMANTICS

FOCAL is a constructive, first-order, multimodal logic. The
key features that distinguish it as an authorization logic are
the “says” and “speaks for” connectives, invented by Lampson
et al. [1]. These are used to reason about authorization—for
example, access control in a distributed system can be modeled
in the following standard (albeit stylized) way:

Example 1. A guard implements access control for a printer
p. To permit printing to p, the guard must be convinced that
guard formula PrintServer says printTo(p) holds, where
PrintServer is the principal representing the server process.
That formula means that PrintServer believes printTo(p)
holds. To grant printer access to user u, the print server can
issue the statement u speaksfor PrintServer . That formula
means anything u says, the PrintServer must also say. So if
u says printTo(p), then PrintServer says printTo(p), which
satisfies the guard formula hence affords the user access to
the printer.

Figure 1 gives the formal syntax of FOCAL. There are
two syntactic classes, terms τ and formulas φ. Metavariable x
ranges over first-order variables, f over first-order functions,
and r over first-order relations.

Formulas of FOCAL do not permit monadic second-order
universal quantification, unlike CDD and NAL. In NAL, which
is an extension of CDD, that quantifier was used only to define
false and speaksfor as syntactic sugar. FOCAL instead adds
these as primitive connectives to the logic. This simplification
reduces the logic from second-order down to first-order.

A. Semantic models

The belief semantics of FOCAL is based on a combination
of two standard semantic models—first-order models and
constructive models—with worldviews, which are used to
interpret says and speaksfor. To our knowledge, this semantics
is new in the study of authorization logics. Our presentation
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mostly follows the semantics of intuitionistic predicate calcu-
lus given by Troelstra and van Dalen [30].

First-order models: A first-order model with equality is
a tuple (D,=, R, F ). The purpose of a first-order model is
to interpret the first-order fragment of the logic, specifically
first-order quantification, functions, and relations. D is a set,
the domain of individuals. Semantically, quantification in the
logic ranges over these individuals. R is a set {ri | i ∈ I}
of relations on D, indexed by set I . Likewise, F is a set
{fj | j ∈ J} of functions on D, indexed by set J . There is
a distinguished equality relation =, which is an equivalence
relation on D, such that equal individuals are indistinguishable
by relations and functions.

To interpret first-order variables, the semantics employs
valuation functions, which map variables to individuals. De-
note the individual that variable x represents in valuation v as
v(x).

Constructive models: A constructive model is a tuple
(W,≤, s). The purpose of constructive models is to extend
first-order models to interpret the constructive fragment of the
logic, specifically implication and universal quantification. W
is a set, the possible worlds. We denote an individual world as
w. Intuitively, a world w represents the state of knowledge of a
constructive reasoner. Constructive accessibility relation ≤ is a
partial order on W . If w ≤ w′, then the constructive reasoner’s
state of knowledge could grow from w to w′. Function s is
the first-order interpretation function. It assigns a first-order
model (Dw,=w, Rw, Fw) to each world w. Let the individual
elements of Rw be denoted {ri,w | i ∈ I}; likewise for Fw,
as {fj,w | j ∈ J}. Thus, s enables a potentially different
first-order interpretation at each world. But to help ensure that
the constructive reasoner’s state of knowledge only grows—
hence never invalidates a previously admitted construction—
we require s to be monotonic w.r.t. ≤. That is, if w ≤ w′

then (i) Dw ⊆ Dw′ , (ii) d =w d′ implies d =w′ d′, (iii)
ri,w ⊆ ri,w′ , and (iv) for all tuples ~d of individuals, it holds
that fj,w(~d) =w fj,w′(~d).

It’s natural to wonder why we chose to introduce possible
worlds into the semantics here after arguing against them in
§I. Note, though, that the worlds in the constructive model
are being used to model only the constructive reasoner—
which we might think of as the guard, who exists outside
the logic and attempts to ascertain the truth of formulas—
not any of the principals reasoned about inside the logic.
Moreover, we have not introduced any accessibility relations
for principals, but only a single accessibility relation for the
constructive reasoner. So the arguments in §I don’t apply
here. It would be possible to eliminate our usage of possible
worlds by employing a Heyting algebra semantics [31] of
constructive logic. But possible worlds blend better with our
eventual introduction of accessibility relations for principals
in §III.

It’s also natural to wonder why FOCAL is constructive
rather than classical. Schneider et al. [29] write that con-
structivism preserves evidence: “Constructive logics are well
suited for reasoning about authorization. . . because construc-

tive proofs include all of the evidence used for reaching a
conclusion and, therefore, information about accountability is
not lost. Classical logics allow proofs that omit evidence.”
Garg and Pfenning [32] also champion the notion of evidence
in authorization logics, writing that “[constructive logics] keep
evidence contained in proofs as direct as possible.” So we
chose to make FOCAL constructive for the sake of evidence.
Regardless, we believe that a classical version of FOCAL
could be created without difficulty.

Belief models: A belief model is a tuple (W,≤, s, P, ω).
The purpose of belief models is to extend constructive models
to interpret says and speaksfor. The first part of a belief model,
(W,≤, s), must itself be a constructive model. The next part,
P , is the set of principals. Although individuals can vary from
world to world in a model, the set of principals is fixed across
the entire model.4 Because we make no syntactic distinction
between individuals and principals, all principals must also be
individuals: P must be a subset of Dw for every w. We define
an equality relation .

= on principals, such that p .
= p′ iff there

exists a w such that p =w p
′.

The final part of a belief model, worldview function ω,
yields the beliefs of a principal p: the set of formulas that p
believes to hold in world w under valuation v is ω(w, p, v).5

To ensure that the constructive reasoner’s knowledge grows
monotonically, worldviews must be monotonic w.r.t. ≤:

Worldview Monotonicity: If w ≤ w′ then ω(w, p, v) ⊆
ω(w′, p, v).

And to ensure that whenever principals are equal they have
the same worldview, we require the following:

Principal Equality (Belief): If p .
= p′, then, for all w

and v, it holds that ω(w, p, v) = ω(w, p′, v).

B. Semantic validity

Figure 2 gives a belief semantics of FOCAL. The validity
judgment is written B,w, v |= φ where B is a belief model and
w is a world in that model. As is standard, B |= φ holds iff, for
all w and v, it holds that B,w, v |= φ; whenever B |= φ, then
φ is a necessary formula in model B. And B, v |= φ holds
iff for all w, it holds that B,w, v |= φ; whenever B, v |= φ,
then φ is a valuation-necessary formula. Likewise, |= φ holds
iff, for all B, it holds that B |= φ; and whenever |= φ, then
φ is a validity. Finally, let B,w, v |= Γ, where Γ is a set of
formulas, denote that for all ψ ∈ Γ, it holds that B,w, v |= ψ.

The semantics relies on an auxiliary interpretation function
µ that maps syntactic terms τ to semantic individuals:

µ(x) = v(x)

µ(fj(~τ)) = fj,w(µ(~τ))

4This assumption is consistent with other constructive multimodal log-
ics [33], [34], which have a fixed set of modalities (just � and ♦), and
with classical multimodal epistemic logics [25], which have an indexed set
modalities (typically denoted Ki).

5For sake of simplicity, §I used notation ω(p) when first presenting the
idea of worldviews. Now that we’re being precise, ω needs two additional
arguments: constructivity necessitates w, and first-orderedness necessitates v.

3



B,w, v |= true always
B,w, v |= false never
B,w, v |= ri(~τ) iff µ(~τ) ∈ ri,w
B,w, v |= τ1 = τ2 iff µ(τ1) =w µ(τ2)
B,w, v |= φ1 ∧ φ2 iff B,w, v |= φ1 and B,w, v |= φ2

B,w, v |= φ1 ∨ φ2 iff B,w, v |= φ1 or B,w, v |= φ2

B,w, v |= φ1 ⇒ φ2 iff for all w′ ≥ w : B,w′, v |= φ1 implies B,w′, v |= φ2

B,w, v |= ¬φ iff for all w′ ≥ w : B,w′, v 6|= φ
B,w, v |= (∀x : φ) iff for all w′ ≥ w, d ∈ Dw′ : B,w′, v[d/x] |= φ
B,w, v |= (∃x : φ) iff there exists d ∈ Dw : B,w, v[d/x] |= φ
B,w, v |= τ says φ iff φ ∈ ω(w, µ(τ), v)
B,w, v |= τ1 speaksfor τ2 iff ω(w, µ(τ1), v) ⊆ ω(w, µ(τ2), v)

Fig. 2. FOCAL validity judgment for belief semantics

Implicitly, µ is parameterized on B, w, and v, but we omit
writing these for notational simplicity.

The first-order, constructive fragment of the semantics is
routine. The semantics of says is the intuitive semantics we
wished for in §I: A principal µ(τ) says φ exactly when φ
is in that principal’s worldview ω(w, µ(τ), v). And a prin-
cipal µ(τ1) speaks for another principal µ(τ2) exactly when
worldview ω(w, µ(τ1), v) of µ(τ1) is a subset of worldview
ω(w, µ(τ2), v) of µ(τ2)—hence everything µ(τ1) says, µ(τ2)
also says.

Note that some syntactic terms may represent individuals
that are not principals.6 For example, the integer 42 is pre-
sumably not a principal in P , but it could be an individual
in some domain Dw. Users of the logic could therefore write
non-sensical formulas such as 42 says φ, assuming that 42 is a
syntactic term. Such formulas would never hold semantically,
because 42 does not have a worldview.

We impose a few well-formedness constraints on world-
views in this semantics, in addition to Worldview Monotonic-
ity and Principal Equality (Belief). First, worldviews must
be deductively closed—that is, principals must believe all the
formulas that can be deduced from their beliefs. Let Γ ` φ
denote that formula φ can be deduced from set Γ of formulas
(we give a formal definition of relation ` in §V):

Deductive Closure: If Γ ⊆ ω(w, p, v) and Γ ` ψ, then
ψ ∈ ω(w, p, v).

Deductive closure is closely related to logical omniscience,
which, with its known benefits and flaws [35], [36], has
been a standard assumption in authorization logics since their
inception [1]. Although it might seem somewhat unusual to
define this part of the semantics of FOCAL in terms of the
proof system, it models our intuition that principals begin with
a base set of beliefs and derive consequences.7 NAL’s [29]

6We could make FOCAL a two-sorted logic, with one sort for individuals
and another sort for principals. But having only a single sort is definitionally
simpler. Another alternative would be to coerce individuals to principals—for
example, treat 42 as the principal who believes only necessities (i.e., the ⊥
principal defined in §VI).

7It would be possible to replace Deductive Closure with a purely semantic
definition. But to maintain the results of §IV, the Kripke semantics of says
in §III would need to be adjusted.

informal worldview semantics uses the same intuition.
Second, worldviews must ensure that says is a transparent

modality—that is, for any principal p, it holds that p says φ
exactly when p says (p says φ):

Says Transparency: φ ∈ ω(w, µ(τ), v) iff τ says φ ∈
ω(w, µ(τ), v).

So says supports positive introspection: if p believes that φ
holds, then p is aware of that belief, therefore p believes that
p believes that φ holds. Moreover, the converse of that holds
as well. Recent authorization logics include transparency [29],
[38], and it is well known (though sometimes vigorously
debated) in epistemic logic [24], [39].

Third, worldviews must enable principals to delegate, or
hand-off, to other principals: If a principal p believes that
p′ speaksfor p, it should hold that p′ does speak for p:

Hand-off: If (τ speaksfor τ ′) ∈ ω(w, µ(τ ′), v) then
ω(w, µ(τ), v) ⊆ ω(w, µ(τ ′), v).

Hand-off, as the following axiom, existed in the earliest
authorization logic [1], though not all logics since then have
included it:

(τ ′ says (τ speaksfor τ ′))⇒ (τ speaksfor τ ′) (1)

Each of these well-formedness conditions is necessary to
achieve the soundness result of §V, because the proof system
there includes rules that correspond to the conditions. But with
appropriate changes to the proof system, any of the conditions
could be eliminated.

III. KRIPKE SEMANTICS

The Kripke semantics of FOCAL is a combination of
three standard kinds of semantic models: first-order models,
constructive models, and modal (Kripke) models. Similar
semantic models have been explored before (see, e.g., [22],
[33]), though we are not aware of any authorization logic
semantics that is equivalent to or subsumes our semantics.
First-order and constructive models were already presented in
§II, so we begin here with modal models.
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K,w, v |= τ says φ iff for all w′, w′′ : w ≤ w′ ≤µ(τ) w
′′ implies M,w′′, v |= φ

K,w, v |= τ1 speaksfor τ2 iff ReachAcc(µ(τ1), w) ⊇ ReachAcc(µ(τ2), w)

K,w, v |= . . . iff same as figure 2, but substituting K for B

Fig. 3. FOCAL validity judgment for Kripke semantics

A. Modal models

A modal model is a tuple (W,≤, s, P,A). The purpose of
a modal model is to extend constructive models to interpret
says and speaksfor. The first part of a modal model, (W,≤, s),
must itself be a constructive model. The next part, P , is the
set of principals. As with belief models, all principals must be
individuals, so P must be a subset of Dw for every w. Principal
equality relation .

= is defined just as in belief models. The final
part of a modal model, A, is a set {≤p | p ∈ P} of binary
relations on W , called the principal accessibility relations.8

If w ≤p w′, then at world w, principal p considers world w′

possible. To ensure that equal principals have the same beliefs,
we require

Principal Equality (Kripke): If p .
= p′, then ≤p = ≤p′ .

Like ≤ in a constructive model, we require s to be monotonic
w.r.t. each ≤p. This requirement enforces a kind of construc-
tivity on each principal p, such that from a world in which
individual d is constructed, p cannot consider possible any
world in which d has not been constructed. Unlike ≤, none of
the ≤p are required to be partial orders: they are not required
to satisfy reflexivity, anti-symmetry, or transitivity.

That non-requirement raises an important question. In epis-
temic logics, the properties of what we call the “principal
accessibility relations” determine what kind of knowledge is
modeled [25]. If, for example, these relations must be reflex-
ive, then the logic models veridical knowledge: if p says φ,
then φ indeed holds. But that is not the kind of knowledge
we seek to model with FOCAL, because principals may say
things that in fact do not hold. So what are the right properties,
or frame conditions, to require of our principal accessibility
relations? We briefly delay presenting them, so that we can
present the Kripke semantics.

B. Semantic validity

Figure 3 gives a Kripke semantics of FOCAL. The validity
judgment is written K,w, v |= φ where K is a modal model
and w is a world in that model. Only the judgments for the
says and speaksfor connectives are given in figure 3. For
the remaining connectives, the Kripke semantics is the same
as the belief semantics in figure 2. Interpretation function µ
remains unchanged from §II, except that it is now implicitly
parameterized on K instead of B.

To understand the semantics of says, first observe the
following. Suppose that, for all worlds w′, it holds that w ≤ w′

8In our notation, an unsubscripted ≤ always denotes the constructive
relation, and a subscripted ≤ always denotes a principal relation.

implies w = w′.9 Then the semantics of says simplifies to

K,w, v |= τ says φ

iff for all w′′ : w ≤µ(τ) w
′′ implies K,w, v |= φ,

which is the standard semantics of � in classical modal
logic [24]: a principal believes a formula holds whenever that
formula holds in all accessible worlds.

The purpose of the quantification over w′, where w ≤ w′, in
the unsimplified semantics of says is to achieve monotonicity
of the constructive reasoner:

Proposition 1. If K,w, v |= φ and w ≤ w′ then K,w′, v |= φ.

That is, whenever φ holds at a world w, if the constructive
reasoner is able to reach an extended state of knowledge at
world w′, then φ should continue to hold at w′. Without the
quantification over w′ in the semantics of says, monotonicity
is not guaranteed to hold. Constructive modal logics have,
unsurprisingly, also used this semantics for � [33], [34].

Note that, if there do not exist any worlds w′ and w′′ such
that w ≤ w′ ≤µ(τ) w

′′, then at w, principal τ will say any
formula φ, including false. When a principal says false at world
w, we deem that principal compromised at w.

The semantics of speaksfor uses an auxiliary function
ReachAcc(p, w), which yields the component of ≤p that is
reachable from, or reaches to, world w. Formally, let Gp be
the undirected graph with nodes W and edges ≤ ∪ ≤p. And
let [w]p be the set of worlds w′ such that w′ and w are in the
same connected component of Gp. Then ReachAcc is defined
as follows:10

ReachAcc(p, w) , ≤p |[w]p .

So ReachAcc(p, w) contains edge (w′, w′′) iff that edge is
already present in ≤p, and moreover w′ and w′′ are reachable
from w by following any path that contains edges from either
≤p or ≤.

To understand the semantics of speaksfor, observe that
whenever [w]p equals W , it holds that ReachAcc(p, w) equals
≤p. So the semantics simplifies to

K,w, v |= τ1 speaksfor τ2 iff ≤µ(τ1) ⊇ ≤µ(τ2). (2)

That is, the accessibility relation of τ1 must be a superset of
the accessibility relation of τ2. That definition is standard in
classical authorization logics [19], [20].

9This condition corresponds to the axiom of excluded middle, hence its
imposition creates a classical variant of FOCAL. So it makes sense that adding
the frame condition would result in the classical semantics of �.

10If R is a binary relation on set A, then R|X is the restriction of R to A,
where X ⊆ A. That is, R|X = {(x, x′) | (x, x′) ∈ R and x ∈ X and x′ ∈
X}.
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However, the classical definition has a surprising interaction
with hand-off (1):

Example 2. Consider a world w. Suppose there do not exist
any worlds w′ and w′′ such that w ≤ w′ ≤µ(τ) w

′′. Then at
world w, principal τ is compromised: it says false, and also
says any other formula φ.

Let φ be τ ′ speaksfor τ . Then it holds, for any principal τ ′,
that K,w, v |= τ says (τ ′ speaksfor τ). By hand-off, we then
have K,w, v |= τ ′ speaksfor τ . By the classical semantics
of speaksfor, we have ≤µ(τ ′) ⊇ ≤µ(τ). So τ ’s accessibility
relation must be a subset of all other principal’s accessibility
relations. In the extreme case, if there is a principal11 whose
accessibility relation is empty, τ ’s relation must also be empty.

Therefore, if there ever is any world w at which principal τ
is compromised, then τ ’s accessibility relation must be empty.
That means if τ is compromised at one world, τ must be
compromised at all worlds.

As a result, the constructive reasoner is immediately forced
to recognize that a principal is compromised, even if the
reasoner is in a minimal state of knowledge (i.e., at a world
w at which there do not exist any worlds v such that v ≤ w.)
The reasoner is not allowed to wait until some greater state of
knowledge to discover that a principal is compromised. This
seems to be an intuitionistically undesirable feature.

We therefore relax the classical semantics of speaksfor by
using ReachAcc:

K,w, v |= τ1 speaksfor τ2

iff ReachAcc(µ(τ1), w) ⊇ ReachAcc(µ(τ2), w) (3)

This is the semantics we adopt in FOCAL. With it, only
the components of the accessibility relations that are locally
reachable from w need to be considered. So a principal could
be entirely compromised in some set of worlds not reachable
from w, but that principal need not be compromised at w.

We’ve now seen two semantics of speaksfor (2), (3) that
validate hand-off. That raises a question: what is the most
permissive semantics of speaksfor (meaning that it allows as
many models as possible) that validates hand-off? We don’t
know. One way to answer this question would be to show
completeness of the FOCAL proof system. We leave that as
future work.

C. Frame conditions

We now return to the discussion begun in §III-A of the
frame conditions for FOCAL. The first two frame conditions
we impose help to ensure Says Transparency.

IT: If w ≤p u ≤p v, then there exists a w′ such that
w ≤ w′ ≤p v.
ID: If w ≤p v, then there exists a w′ and u such that
w ≤ w′ ≤p u ≤p v.

11We indeed will require the existence of such a principal, which we notate
as >, in §VI.
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Fig. 4. Frame conditions for Kripke semantics

Figure 4 depicts these conditions; dotted lines indicate exis-
tentially quantified edges. IT helps to guarantee if p says φ
then p says (p says φ); ID does the converse.12

Note how, if w = w′, the conditions reduce to the clas-
sical definitions of transitivity and density. Those classical
conditions are exactly what guarantee transparency in classical
modal logic.

IT and ID are not quite sufficient to yield transparency. But
by also imposing the following frame condition, we do achieve
transparency:13

F2: If w ≤p v ≤ v′, then there exists a w′ such that
w ≤ w′ ≤p v′.

F2 is depicted in figure 4. It is difficult to motivate F2 solely
in terms of authorization logic, though it has been proposed in
several Kripke semantics for constructive modal logics [34],
[40]–[42]. But there are two reasons why F2 is desirable for
FOCAL:

• Assuming F2 holds, IT and ID are not only sufficient but
also necessary conditions for transparency—a result that
follows from work by Plotkin and Stirling [40]. So in
the presence of F2, transparency in FOCAL is precisely
characterized by IT and ID.

• Suppose FOCAL were to be extended with a ♦ modal-
ity. It could be written τ suspects φ, with semantics
K,w, v |= τ suspects φ iff there exists w′ such that
w ≤µ(τ) w′ and K,w′, v |= φ. We would want says
and suspects to interact smoothly. For example, it would
be reasonable to expect that ¬(τ suspects φ) implies
τ says ¬φ. For if τ does not suspect φ holds anywhere,
then τ should believe ¬φ holds. Condition F2 guarantees
that implication [40]. So F2 prepares FOCAL for future

12IT and ID are abbreviations for intuitionistic transitivity and intuitionistic
density. We use the term “intuitionistic” instead of “constructive” just to avoid
confusion: CT might be read as classical or constructive transitivity.

13F2 is the name given this condition by Simpson [34].
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extension with a suspects modality.14

Like the constraints imposed on worldviews in §II-B, IT,
ID, and F2 are used to achieve the soundness result of §V.
But with appropriate changes to the proof system, the frame
conditions could be eliminated.

Finally, to ensure the validity of hand-off, we impose the
following frame condition:

H: For all principals p and worlds w, if there do not
exist any worlds w′ and w′′ such that w ≤ w′ ≤p w′′,
then, for all p′, it must hold that ReachAcc(p, w) ⊆
ReachAcc(p′, w).

This condition guarantees that if a principal p becomes com-
promised at world w, then the reachable component of its
accessibility relation will be a subset of all other principals’.
By the FOCAL semantics of speaksfor, all other principals
therefore speak for p at w, thus hand-off (1) from §II-B is
valid.

IV. SEMANTIC TRANSFORMATION

We have now given two semantics for FOCAL, a belief
semantics (§II) and a Kripke semantics (§III). Naturally, the
question arises: how are these two semantics related? It turns
out that the Kripke semantics can be soundly transformed into
the belief semantics; but the Kripke semantics treats speaksfor
differently than does the belief semantics—as we now explain.

Given a modal model K, there is a natural way to construct
a belief model from it: assign each principal a worldview
containing exactly the formulas that the principal says in K.
Call this construction k2b, and let k2b(K) denote the resulting
belief model.

To give a precise definition of k2b, we need to introduce
a new notation. Given semantic principal p, formula p says φ
is not necessarily well-formed, because p is not necessarily
a syntactic term. So let K,w, v |= p̂ says φ be defined as
follows: for all w′ and w′′ such that w ≤ w′ ≤p w′′, it
holds that K,w′′, v |= φ. This definition simply unrolls the
semantics of says to produce something well-formed.15

The precise definition of k2b is as follows: if K =
(W,≤, s, P,A), then k2b(K) is belief model (W,≤, s, P, ω),
where ω(w, p, v) is defined to be {φ | K,w, v |= p̂ says φ}.

Our first concern is whether k2b(K) satisfies all the con-
ditions required by §II: Worldview Monotonicity, Principal
Equality (Belief), Deductive Closure, Says Transparency, and
Hand-off. If a belief model B does satisfy these conditions,
then B is well-formed. Construction k2b does, indeed, produce
well-formed belief models:

14Were suspects to be added to FOCAL, it would also be desirable to
impose a fourth frame condition: if w ≤ w′ and w ≤p v, then there
exists a v′ such that v ≤ v′ and w′ ≤p v′. This condition, named F1 by
Simpson [34], guarantees [40] that τ suspects φ implies ¬(τ says ¬φ). It
also guarantees monotonicity (cf. proposition 1) for suspects. Figure 4 depicts
F1. Simpson [34, p. 51] argues that F1 and F2 could be seen as fundamental,
not artificial, frame conditions for constructive modal logics.

15Another solution would be to stipulate that every principal p can be named
by a term p̂ in the syntax.

Proposition 2. For all well-formed K, belief model k2b(K)
is well-formed.

Modal model K is well-formed if it satisfies all the conditions
required by §III: Principal Equality (Kripke), IT, ID, F2, and
H.

Our second concern is whether k2b(K) preserves the va-
lidity of formulas. In particular, if a formula is valid in K, it
should remain so in k2b(K). Construction k2b does preserve
validity:

Theorem 1. For all K, w, v, and φ, if K,w, v |= φ then
k2b(K), w, v |= φ.

The converse of theorem 1, however, does not hold. The
problem is that some speaksfor formulas might be invalid in
K yet become valid in k2b(K). If, for example, principals p
and q say all the same formulas in K, but their accessibility
relations ≤p and ≤q are not the same, then they don’t speak
for each other in the Kripke semantics. Yet in k2b(K), their
worldviews will be equal, so they will speak for each other in
the belief semantics.

This “feature” of the accessibility-relation based definition
of speaksfor—that principals might not speak for each other
yet have the same beliefs—is well-known. ABLP [19] and
Howell [20] both identified definitions of speaksfor that would
result in full equivalence of the belief and Kripke semantics
of FOCAL; Howell calls this definition weak speaks-for and
writes, “[O]ne may wonder why [ABLP] preferred a definition
of speaks-for that was stronger than it needed to be. The
intuition seems to be that [in A speaksfor B] the stronger
semantics captures the fact that A understands B’s reasons for
believing various statements” [20, p. 43]. FOCAL adopts the
stronger semantics of speaksfor for consistency with this prior
work. Nonetheless, to obtain full equivalence of Kripke model
to the constructed belief model, FOCAL could be modified to
adopt the weak semantics.

We might wonder whether there is a construction that can
soundly transform belief models into Kripke models. Consider
trying to transform the following belief model B into a Kripke
model:

B has a single world w and a proposition (i.e., a
nullary relation) X , such that, for all v, it holds
that B,w, v 6|= X . Suppose that principal p’s
worldview contains X—i.e., for all v, it holds that
X ∈ ω(w, p, v)—and that p’s worldview does not
contain false. By the semantics of says, it holds that
B,w, v |= p says X .

When transforming B to a Kripke model K, what edges could
we put in ≤p? There are only two choices: ≤p could be empty,
or ≤p could contain the single edge (w,w). If ≤p is empty,
then p is compromised, hence p says false. That contradicts our
assumption that false is not in p’s worldview. If w ≤p w, then
for w′ and w′′ such that w ≤ w′ ≤p w′′, it does not hold that
K,w′′, v |= φ—because w and w′′ can only be instantiated as
w, and B,w, v 6|= X . Hence p does not say X . That contradicts
our assumption that X is in p’s worldview. So we cannot
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Γ, φ ` φ
HYP

Γ ` φ
Γ, ψ ` φ

WEAK
Γ ` true

TRUE-I
Γ ` false

Γ ` φ
FALSE-E

Γ ` φ Γ ` ψ
Γ ` φ ∧ ψ

AND-I
Γ ` φ ∧ ψ

Γ ` φ
AND-LE

Γ ` φ ∧ ψ
Γ ` ψ

AND-RE
Γ ` φ1

Γ ` φ1 ∨ φ2
OR-LI

Γ ` φ2

Γ ` φ1 ∨ φ2
OR-RI

Γ ` φ1 ∨ φ2 Γ, φ1 ` ψ Γ, φ2 ` ψ
Γ ` ψ

OR-E
Γ, φ ` ψ

Γ ` φ⇒ ψ
IMP-I

Γ ` φ Γ ` φ⇒ ψ

Γ ` ψ
IMP-E

Γ, φ ` false

Γ ` ¬φ
NOT-I

Γ ` φ Γ ` ¬φ
Γ ` false

NOT-E
Γ ` φ x 6∈ FV (Γ)

Γ ` (∀x : φ)
FORALL-I

Γ ` (∀x : φ)

Γ ` φ[τ/x]
FORALL-E

Γ ` φ[τ/x]

Γ ` (∃x : φ)
EXISTS-I

Γ ` (∃x : φ) Γ, φ ` ψ x 6∈ FV (Γ, ψ)

Γ ` ψ
EXISTS-E

Γ ` τ = τ
EQ-R

Γ ` τ1 = τ2
Γ ` τ2 = τ1

EQ-S

Γ ` τ1 = τ2 Γ ` τ2 = τ3
Γ ` τ1 = τ3

EQ-T
Γ ` τi = τ ′i

Γ ` f(τ1, . . . , τn) = f(τ ′1, . . . , τ
′
n)

EQ-F
Γ ` r(τ1, . . . , τn) Γ ` τi = τ ′i

Γ ` r(τ ′1, . . . , τ ′n)
EQ-R

Γ ` φ
τ says Γ ` τ says φ

SAYS-LRI
Γ ` τ says φ

τ says Γ ` τ says φ
SAYS-LI

τ says Γ ` φ
τ says Γ ` τ says φ

SAYS-RI
Γ ` τ2 says (τ1 speaksfor τ2)

Γ ` τ1 speaksfor τ2
SF-I

Γ ` τ1 speaksfor τ2 Γ ` τ1 says φ

Γ ` τ2 says φ
SF-E

Γ ` τ speaksfor τ
SF-R

Γ ` τ1 speaksfor τ2 Γ ` τ2 speaksfor τ3
Γ ` τ1 speaksfor τ3

SF-T

Fig. 5. FOCAL derivability judgment

construct an accessibility relation ≤p that causes the resulting
Kripke semantics to preserve validity of formulas from the
belief semantics.

There is, therefore, no construction that can soundly trans-
form belief models into Kripke models—unless, perhaps, the
set of worlds is permitted to change. It might be possible to
synthesize a new set of possible worlds, and equivalence rela-
tions on them, yielding a Kripke model that preserves validity
of formulas from the belief model. We are investigating this
possibility in ongoing work.

V. PROOF SYSTEM

FOCAL’s derivability judgment is written Γ ` φ where Γ is
a set of formulas called the context.16 As is standard, we write
` φ when Γ is the empty set. In that case, φ is a theorem. We
write Γ, φ to denote Γ ∪ {φ}.

Figure 5 presents the proof system. In it, φ[τ/x] denotes
capture-avoiding substitution of τ for x in φ. The first-order
fragment of the proof system is routine (e.g., [43]–[45]).
SAYS-LRI, SAYS-LI, and SAYS-RI use notation τ says Γ, which
means that τ says all the formulas in set Γ. Formally, τ says Γ
is defined as {τ says φ | φ ∈ Γ}.

SAYS-LRI corresponds [24] to standard axiom K from
epistemic logic; SAYS-RI, to standard axiom 4; and SAYS-LI,

16These formulas are localized hypotheses, which the proof system uses
instead of the hypothetical judgments found in natural deduction systems.
Similar to the left-hand side Γ of a sequent Γ =⇒ ∆, the localized hypotheses
are assumptions being used to derive right-hand side ∆. Unlike a sequent, Γ
is a set, not a sequence.

to the converse C4 [38], [46] of 4:

K : (p says (φ⇒ ψ))⇒ (p says φ)⇒ (p says ψ)

4 : (p says φ)⇒ (p says (p says φ))

C4 : (p says (p says φ))⇒ (p says φ)

K and SAYS-LRI mean that modus ponens applies inside says.
They correspond to Deductive Closure. Because of SAYS-LRI
and IMP-I, the deduction theorem holds for FOCAL [47]. C4
and 4, along with SAYS-LI and SAYS-RI, mean that p says
(p says φ) is equivalent to p says φ; they correspond to Says
Transparency. In the Kripke semantics, SAYS-RI corresponds
to IT; and SAYS-LI, to ID.

SF-I corresponds to hand-off (1). SF-E uses speaksfor to
deduce beliefs. SF-R and SF-T state that speaksfor is reflexive
and transitive.

The usual sequent calculus structural rules of contraction,
substitution and exchange are all admissible. But WEAK is not
admissible: it must be directly included in the proof system,
because the conclusions of SAYS-{LRI,LI,RI} capture their
entire context Γ inside says.

Our first soundness theorem for FOCAL states that if φ
is provable from assumptions Γ, and that if a belief model
validates all the formulas in Γ, then that model must also
validate φ. Therefore, any provable formula is valid in the
belief semantics:

Theorem 2. If Γ ` φ and B,w, v |= Γ, then B,w, v |= φ.

This result is, to our knowledge, the first proof of soundness
for an authorization logic w.r.t. a belief semantics.

Our second soundness theorem for FOCAL states that any
provable formula is valid in the Kripke semantics:
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Theorem 3. If Γ ` φ and K,w, v |= Γ, then K,w, v |= φ.

We have mechanized the proof of theorem 3 in Coq. We expect
that, with additional effort, the proof of theorem 2 could also
be mechanized.

VI. CASE STUDY: NAL

We now show how to extend FOCAL to a logic that we call
FOCALE (for FOCAL Extended). FOCALE adds to FOCAL
the connectives and features found in Nexus Authorization
Logic (NAL) [29]—specifically, restricted delegation, sub-
principals, and intensional group principals. Supporting these
features requires non-trivial extensions to the semantic models
of §II and §III. We chose to study NAL in part because it
has been used to implement the authorization subsystem of a
real operating system [18], which makes NAL a very practical
authorization logic.

FOCALE extends the FOCAL syntax (figure 1) as follows:

τ ::= . . . | τ1.τ2 | {x : φ}
φ ::= . . . | τ1 speaksfor τ2 on (x : φ)

These new syntactic forms are explained, next.
When a principal τ2 is implemented by another principal

τ1, such that τ1 can completely control τ2’s actions, then τ2
is a subprincipal of τ1, and τ1 is a superprincipal of τ2. That
relationship is denoted τ1.τ2. For example, an operating system
OS running on a CPU would be a subprincipal CPU .OS .
And a process proc executed by that operating system would
be (CPU .OS ).proc. Since τ1 completely controls the actions
of τ1.τ2, anything τ1 believes is also a belief of τ1.τ2.

An intensional group principal is a principal whose be-
liefs are an aggregation of the beliefs of other principals.
It is “intensional” because it is defined by a characteristic
predicate: group {x : φ} is the principal whose beliefs are
the aggregation of the beliefs of all principals x who satisfy
formula φ, where x is free in φ. Aggregation in NAL, hence
in FOCALE, means union followed by deductive closure. So
groups are disjunctive.17 For example, formula φ is a belief of
group {x : x = Alice ∨ x = Bob} if φ is a belief of Alice , or
is a belief of Bob, or can be deduced from the union of the
beliefs of Alice and Bob. Because of group principals, terms
and formulas are now mutually recursive syntactic classes.

Finally, restricted delegation is a limited form of speaksfor
in which a principal delegates only partial authority to another
principal. When τ1 speaksfor τ2 on (x : φ), only on statements
φ with free variable x does τ1 speak for τ2:

Example 3. If u speaksfor PrintServer on (p : printTo(p)),
then whenever user u says printTo(labPrinter), it will be
as if PrintServer says printTo(labPrinter). But if u says
a formula ψ not of the form (p : printTo(p))—for example,
u says emptyPrintQueue(labPrinter)—then it will not be as
if PrintServer says ψ.

17There would be no problem defining conjunctive groups based on inter-
section of beliefs, but NAL does not include them so neither does FOCALE.

A. FOCALE belief semantics

A FOCALE belief model is a tuple (W,≤, s, P, ω,t,⊥,>).
The first part of a FOCALE belief model, (W,≤, s, P, ω), must
be a belief model as in §II-A. The remaining parts of the model
are used to interpret group and subprincipals.

To interpret group principals, we now require set P of
principals to form a join semilattice under join operation t.
The lattice must have a bottom element ⊥ and top element >.
Principal > believes every formula, including false, whereas
principal ⊥ believes only valuation necessities (cf. §II-B). Join
operator t is used to take disjunctions of principals: p t q
is the principal who believes those statements that either p
or q believe, or statements that can be deduced from those.
Formally, we require that the following condition holds:

Group Principal (Belief): For all principals p and q,
and for all w and v, worldview ω(w, (p t q), v) is the
deductive closure of ω(w, p, v) ∪ ω(w, q, v).

To interpret subprincipals, we now require the existence of a
distinguished first-order function subw at each world w. Given
principal p and individual d, function subw(p, d) yields the
principal q that corresponds to d as implemented by p. For all
p and d, we require that ω(p) ⊆ ω(subw(p, d)) holds, so that
subprincipals are guaranteed to believe any formula believed
by a superprincipal.

Interpretation function µ is now extended to handle subprin-
cipals and group principals:

µ(τ1.τ2) = subw(µ(τ1), µ(τ2))

µ({x : φ}) =
⊔

p : B,w,v[p/x]|=φ

p

As in §II, function µ is implicitly parameterized on B, w,
and v. The interpretation of subprincipals is straightforward:
simply interpret each term individually, then use subw to yield
the subprincipal. Group principals are interpreted by taking the
join over all principals p who satisfy formula φ. If no principal
satisfies φ, the result of the empty join is ⊥.

The semantics of restricted delegation is a simple adaptation
of the semantics in figure 2:

B,w, v |= τ1 speaksfor τ2 on (x : φ)

iff ω(w, µ(τ1), v) ∩ S ⊆ ω(w, µ(τ2), v) ∩ S,

where S = {φ[τ/x] | τ}. That is, the worldview of τ1 must
be a subset of the worldview of τ2, but only on formulas of
the form φ.

B. FOCALE Kripke semantics

A FOCALE modal model is a tuple (W,≤, s, P,A,t,⊥,>).
The first part of a FOCALE modal model, (W,≤, s, P,A),
must be a modal model as in §III-A. As with FOCALE
belief models, P must form a join semilattice under t.
The intuitive interpretation of this lattice remains unchanged,
but we replace condition Group Principal (Belief) with the
following condition:

Group Principal (Kripke): For all principals p and q, it
holds that Aptq = Ap ∩Aq .
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Γ ` τ2 says (τ1 speaksfor τ2 on (x : φ))

Γ ` τ1 speaksfor τ2 on (x : φ)
RSF-I

Γ ` τ1 speaksfor τ2 on (x : φ) Γ ` τ1 says φ[τ/x]

Γ ` τ2 says φ[τ/x]
RSF-E

Γ ` τ speaksfor τ on (x : φ)
RSF-R

Γ ` τ1 speaksfor τ2 on (x : φ) Γ ` τ2 speaksfor τ3 on (x : φ)

Γ ` τ1 speaksfor τ3 on (x : φ)
RSF-T

Γ ` φ[τ/x]

Γ ` τ speaksfor {x : φ}
MEMBER

Γ, φ ` x speaksfor τ x 6∈ FV (τ) ∪ FV (Γ)

Γ ` {x : φ} speaksfor τ
SF-GROUP

Γ ` τ1 speaksfor τ1.τ2
SF-SUBPRIN

Fig. 6. FOCALE derivability judgment

Top principal > has the empty accessibility relation—that is,
A> = ∅—which means that > believes every formula. And
bottom principal ⊥ has the complete accessibility relation—
that is, A⊥ = W ×W—which means that ⊥ believes only
valuation necessities (cf. §II-B).

Interpretation function µ is extended to handle subprincipals
and group principals. To interpret subprincipals, we again
require the existence of subw at each world w, with the
same intuitive meaning as before. Formally, for all p, d, and
w, we now require that Ap ⊇ Asubw(p,d). This requirement
ensures that subprincipals believe any formula believed by a
superprincipal. When interpreting group principals, the join is
now taken over all principals p such that K,w, v[p/x] |= φ
holds. This interpretation is similar to the algebra of principals
defined in ABLP logic [19].

The semantics of restricted delegation is more complicated,
and resembles a semantics invented by Howell [20]:

K,w, v |= τ1 speaksfor τ2 on (x : φ)

iff for all w′, w′′ : (w′, w′′) ∈ Aµ(τ2)

implies there exists w′′′ : w′′ ≡w
′

x:φ w
′′′

and (w′, w′′′) ∈ Aµ(τ1)

To understand this definition, first notice its use of an equiva-
lence relation ≡wx:φ on worlds. (We briefly postpone defining
that relation.) Suppose, for sake of explanation, that we re-
placed the equivalence relation with simple equality of worlds.
Then the semantics would require (in the third line) that
w′′ = w′′′, in which case it would simplify to

for all w′, w′′ : (w′, w′′) ∈ Aµ(τ2)

implies (w′, w′′) ∈ Aµ(τ1),

which itself simplifies to Aµ(τ2) ⊆ Aµ(τ1). That is exactly
the semantics of unrestricted delegation τ1 speaksfor τ2. So
the generalization of equality to equivalence is the only new
aspect of the semantics of restricted delegation.

Intuitively, equivalence relation ≡wx:φ deems two worlds
to be equivalent if they agree on the validity of formula φ
in all valuations, assuming the existence of individuals Dw.
Formally, define w′ ≡wx:φ w

′′ to hold iff

∀d ∈ Dw : ∀v : (M,w′, v[d/x] |= φ)

⇐⇒ (M,w′′, v[d/x] |= φ).

Returning to the (unsimplified) semantics of restricted del-
egation, note it requires that for any edge (w′, w′′) in τ2’s
accessibility relation, there must also be any edge (w′, w′′′)
in τ1’s accessibility relation, such that w′′ and w′′′ agree on
the validity of φ. That guarantees whenever τ1 says φ[τ/x]
holds, τ2 says φ[τ/x] also holds, because the worlds that are
accessible to τ2 agree on the validity of φ with the worlds that
are accessible to τ1.

We believe that the results relating the FOCAL belief and
Kripke semantics (§IV) could be extended to FOCALE.

C. FOCALE proof system

The FOCALE proof system contains all the FOCAL proof
rules (figure 5) as well as the additional rules in figure 6.
Restricted delegation rules RSF-I, RSF-E, RSF-R, and RSF-T
are straightforward adaptations of the rules for unrestricted
delegation. Rules MEMBER, SF-GROUP, and SF-SUBPRIN are
adaptations of the NAL rules [29] for group principals and
subprincipals.18

The soundness theorems for FOCALE are as follows:

Theorem 4. If Γ ` φ and B,w, v |= Γ, then B,w, v |= φ.

Theorem 5. If Γ ` φ and K,w, v |= Γ, then K,w, v |= φ.

We have mechanized the proof of theorem 5 in Coq. (We
expect that, with additional effort, the proof of theorem 4 could
also be mechanized.) The mechanized proof contains about
4,000 lines, as measured by wc -l. It currently uses two
additional axioms about the interpretation of principals:

1) If the interpretation of a term τ at a world w is
individual d, then future worlds w′ must also interpret
τ as d. So, informally, the interpretation of terms can’t
change between worlds. Formally, let µw(τ) denote the
application of µ to term τ in world w. Formally, for all
τ , w and w′, if w ≤ w′, or if there a exists p such that
w ≤p w′, then it must hold that µw(τ) = µw′(τ). This
axiom is actually provable as a theorem for all terms
except group principals.

2) If the interpretation of a term at a world is principal
p, then all other worlds must interpret that term as a
principal equivalent to p. So a term must always be

18NAL’s group monotonicity rule is a derived rule in the NAL proof system,
and it is also a derived rule of the FOCALE proof system. We omit it here.
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interpreted as the same principal. Formally, for all τ
and w, if µw(τ) ∈ P then, for all w′, it must hold that
µw′(τ) ∈ P and µw(τ)

.
= µw′(τ).

In ongoing work, we are attempting to eliminate these axioms.

D. FOCALE vs. NAL

FOCALE has essentially the same proof system as NAL,
but there are a few differences:
• NAL has second-order universal monadic quantification.

But it uses that feature only to define speaksfor and
false as derived forms; it was never otherwise needed
in the examples in the NAL rationale [29]. So FOCALE
eliminates it and enjoys a simpler, first-order semantics.19

• NAL’s term language, including principals, was not fully
specified. FOCALE provides a full syntax, semantics,
and proof system that we believe is consistent with the
examples in the NAL rationale [29].

• The NAL proof system is a natural deduction style system
with hypothetical judgments. The FOCALE proof system
instead uses localized hypotheses, which we found easy
to work with when mechanizing the proof system in Coq.

Finally, we deliberately designed the FOCALE proof system
such that its theory differs in one important way from NAL’s.
We discuss our motivation for this change, next.

There are two standard ways of “importing” beliefs into a
principal’s worldview. The first is a rule known as Necessita-
tion:

` φ
` p says φ

The second is an axiom known as Unit:

` φ⇒ (p says φ)

Though superficially similar, Necessitation and Unit lead to
different theories.

Example 4. Machines M1 and M2 execute processes P1 and
P2, respectively. M1 has a register R. Let Z be a proposition
representing “register R is currently set to zero.” According
to Unit, ` Z ⇒ (P1 says Z) and ` Z ⇒ (P2 says Z). The
former means that a process on a machine knows the current
contents of a register on that machine; the latter means that
a process on a different machine must also know the current
contents of the register. But according to Necessitation, if ` Z
then ` P1 says Z and ` P2 says Z. Only if R is always zero
must the two processes say so.

Unit, therefore, is appropriate when propositions (or re-
lations or functions) represent global state upon which all
principals are guaranteed to agree. But when propositions
represent local state that could be unknown to some principals,
Unit would arguably be an invalid axiom. A countermodel
demonstrating its invalidity is easy to construct—for example,

19Garg and Abadi [21] show that the second-order definition of speaksfor
likewise can be eliminated in the logic ICL, which is related to CDD hence
to NAL.

stipulate a world w at which Z holds, and let P1’s worldview
contain Z but P2’s worldview not contain Z.

FOCALE was designed to reason about state in distributed
systems, where principals (such as machines) may have local
state, and where global state does not necessarily exist—the
reading at a clock, for example, is not agreed upon by all
principals. So Unit would be invalid for FOCALE principals;
Necessitation is the appropriate choice.

Similarly, NAL principals do not necessarily agree upon
global state. NAL does include Necessitation as an inference
rule and does not include Unit as an axiom. However, NAL
permits Unit to be derived as a theorem by the following
proof:20

[φ]1

p says φ
NAL-SAYS-I

φ⇒ p says φ
NAL-IMP-I1

NAL’s proof system is, therefore, arguably unsound w.r.t. the
belief semantics presented here: there is a formula (Unit) that
is a theorem of the system but that is not semantically valid.

One way to remedy NAL’s unsoundness w.r.t. our semantics
would be to adjust our semantics, such that Unit becomes
valid:

U1: In our belief semantics, require that whenever w |=
φ, it must hold that φ ∈ ω(w, p, v).21

(An equivalent condition could be imposed on the Kripke
semantics.) But we chose not to do this because we want
to model principals who may be ignorant of whether certain
facts hold at a world. Indeed, in our semantics, if φ holds at
a world, some principals might believe φ at that world and
some might not. The adjustments above would instead cause
all principals to believe φ at the world, and we find this to be
an unacceptable loss in expressivity.

Another way to remedy NAL’s unsoundness w.r.t. our se-
mantics would be to adjust NAL’s proof system, such that Unit
is no longer derivable. For example, a side-condition could be
added to NAL-SAYS-I, such that φ must be a validity.22 One
way of accomplishing that might be to forbid uncancelled
hypotheses in the derivation of φ. That would prevent the
above derivation of Unit, although we don’t know what effect
it would have on the completeness of the proof system.

FOCALE’s proof system (specifically, rule SAYS-LRI) in-
stead prohibits derivation of Unit: Unit is invalid in our
semantics, and our proof system is sound w.r.t. our semantics,
so it’s impossible for our proof system to derive Unit. FO-
CALE therefore seems appropriate for reasoning about state
in distributed systems.

20Rules NAL-IMP-I and NAL-SAYS-I can be found in [29]. The brackets
around φ at the top of the proof tree indicate that it is used as a hypothesis [44].
The appearance of “1” as a super- and subscript indicate where the hypothesis
is introduced and cancelled.

21U1 was omitted from the NAL rational [29]. But for the NAL proof
system to be sound w.r.t. the informal NAL belief semantics, the condition
should have been imposed.

22Fred B. Schneider, personal communication, January 31, 2013.
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E. FOCALE vs. CDD

NAL extends CDD’s proof system [28], so we might suspect
that CDD is also unsound w.r.t. our semantics. And it is.
However, CDD has been proved sound w.r.t. a lax logic seman-
tics [21]. That semantics employs a different intuition about
says than NAL and FOCALE. CDD [28, p. 13] understands
p says φ to mean “when combining the [statement φ] that the
[guard] believes with those that [p] contributes, the [guard]
can conclude φ. . . the [guard’s] participation is left implicit.”
In other words, the guard’s beliefs are imported into p’s beliefs
at each world. That’s equivalent to our condition U1 above,
and it results in a different meaning of says than FOCALE or
NAL employs.

VII. RELATED WORK

FOCAL has the first formal belief semantics of any autho-
rization logic. To our knowledge, belief semantics have been
used in only one other authorization logic, and that logic—
NAL [29]—has only an informal semantics. Semantic struc-
tures similar to our belief models have been investigated in
the context of epistemic logic [26], [27]. Fagin et al. [25] call
them syntactic models, and Konolige [37] calls them deduction
models. Konolige proves the equivalence of deduction models
and Kripke models for classical propositional logic.

Garg and Abadi [21] give a Kripke semantics for a logic
they call ICL, which could be regarded as the propositional
fragment of FOCAL. The ICL semantics of says, however,
uses invisible worlds to permit principals to be oblivious to the
truth of formulas at some worlds. That makes Unit (§VI-D)
valid in ICL, whereas Unit is invalid in FOCAL.

Genovese et al. [22] study several uses for Kripke semantics
with an authorization logic they call BLsf, which also could
be regarded as the propositional fragment of FOCAL. Using
their Kripke semantics, they show how to generate evidence
for why an access should be denied, how to find all logical
consequences of an authorization policy, and how to determine
which additional credentials would allow an access. These
questions would also be interesting to address in FOCAL.
However, the Kripke semantics of BLsf differs from FOCAL’s
in its interpretation of both says and speaksfor, so the results
of Genovese et al. are not immediately applicable to FOCAL.

Garg and Pfenning [32] prove non-interference properties
for a first-order, constructive authorization logic. Roughly
speaking, these properties mean that one principal’s beliefs
cannot interfere with another principal’s beliefs unless there is
some trust relationship between those principals. Abadi [28]
also proves such a property for dependency core calculus
(DCC), which is the basis of authorization logic CDD. We
believe that similar properties could be proved for FOCAL.

Garg and Pfenning [48] reject Unit in their authorization
logic BL0, as we did in FOCAL. They demonstrate that
Unit leads to counterintuitive interpretations of some formulas
involving delegation. Abadi [38] notes that Unit “should be
used with caution (if at all),” and suggests replacing it with
the weaker axiom (p says φ) ⇒ (q says p says φ). Genovese
et al. [22] adopt that axiom; in their Kripke semantics, the

frame condition that validates it is: w ≤p u ≤q v implies
w ≤q v. That condition could be added to FOCAL.

VIII. CONCLUDING REMARKS

This work began with the idea of given a Kripke semantics
to NAL. Proving soundness—at first on paper, not in Coq—
turned out to be surprising, because Unit is semantically
invalid but derivable in NAL (§VI-D). As we continued
proving soundness, we (re)discovered the need to impose
frame conditions on the two kinds of accessibility relations
involved in the Kripke semantics (§III-C). The complexity of
the resulting Kripke semantics motivated us to seek a simpler
semantics. We were inspired by the informal semantics of
the NAL rationale [29] and elaborated that into our belief
semantics (§II).

Mechanizing the proof of soundness in Coq was frequently
rewarding. Even though it took a fair amount of effort, it
exposed several bugs (in either our proof system or our
semantics) and gave us high confidence in the correctness of
the result. We expect future benefits, too. From the formal-
ization of the FOCALE proof system in Coq, we could next
extract a verified theorem checker. It would input a proof of
a FOCALE formula, expressed in the FOCALE proof system,
and output whether the proof is correct. Coq would verify that
the checker correctly implements the FOCALE proof system.
This theorem checker could replace the current Nexus [18]
theorem checker, which is implemented in C.23 A verified
theorem checker would arguably be more trustworthy than the
C implementation, thus increasing the trustworthiness of the
operating system.

One of the more intriguing consequences of our semantics
is that says is not a monad [49]. Since Abadi’s invention of
CDD [28], says is frequently assumed to satisfy the monad
laws, which include Unit.24 In our semantics, however, Unit
is invalid, and we’ve argued here that it is inappropriate for
distributed systems. We don’t know whether rejecting the
monad laws will have any practical impact on FOCAL. But
the seminal authorization logic, ABLP [19], didn’t adopt the
monad laws, so at least FOCAL is in good company.
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APPENDIX A
PROOFS

Proposition 1.

Proof: By structural induction on φ. This proof has been
mechanized in Coq.
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Proposition 2.

Proof: Let B = k2b(K). For B to be well-formed it must
satisfy several conditions, which were defined in §II. We now
show that these hold for any such B constructed by k2b.

1) Worldview Montonicity. Assume w ≤ w′ and φ ∈
ω(w, p, v). By the latter assumption and the definition
of k2b, we have that K,w, v |= p̂ says φ. From
proposition 1, it follows that K,w′, v |= p̂ says φ. By
the definition of k2b, it then holds that φ ∈ ω(w′, p, v).
Therefore ω(w, p, v) ⊆ ω(w′, p, v).

2) Principal Equality (Belief). Assume p
.
= p′. Then by

Principal Equality (Kripke), ≤p equals ≤p′ . By the
Kripke semantics of speaksfor, it follows that K,w, v |=
p says φ iff K,w, v |= p′ says φ. By the definition of
k2b, therefore, ω(w, p, v) ⊆ ω(w, p′, v).

3) Deductive Closure. Assume Γ ` φ. By rule SAYS-LRI,
we have p says Γ ` p says φ. By theorem 3, the
following fact follows:25 if, for all ψ ∈ Γ, it holds
that K,w, v |= p says ψ, then it also holds that
K,w, v |= p says φ. Assume Γ ⊆ ω(w, p, v). Then for
all ψ ∈ Γ, it holds that ψ ∈ ω(w, p, v). By the definition
of k2b, for all ψ ∈ Γ, it follows that K,w, v |= p̂ says
ψ. Therefore, by the fact we previously established,
K,w, v |= p says φ. By the definition of k2b, we have
φ ∈ ω(w, p, v).

4) Says Transparency. We prove the “iff” by proving both
directions independently. (⇒) Assume φ ∈ ω(w, p, v)
and p = µ(τ). By the definition of k2b, it holds that
K,w, v |= τ says φ. From IT and F2, it follows that
K,w, v |= τ says (τ says φ). By the definition of k2b,
therefore, (τ says φ) ∈ ω(w, p, v). (⇐) Assume (τ says
φ) ∈ ω(w, p, v) and p = µ(τ). By the definition of k2b,
it holds that K,w, v |= τ says (τ says φ). From ID, it
follows that K,w, v |= τ says φ. By the definition of
k2b, therefore, φ ∈ ω(w, p, v).

5) Hand-off. Assume τ ′ speaksfor τ ∈ ω(w, µ(τ), v). By
the definition of k2b, it holds that K,w, v, |= τ says
(τ ′ speaksfor τ). Expanding the semantic definition of
says, we have that, for all w′ and w′′ such that w ≤
w′ ≤µ(τ) w

′′, it holds that K,w′′, v |= τ ′ speaksfor τ .
Expanding the semantic definition of speaksfor, we have
that ReachAcc(µ(τ ′), w′′) ⊇ ReachAcc(µ(τ), w′′). By
the definition of ReachAcc, we have the following fact:
ReachAcc(µ(τ ′), w′) ⊇ ReachAcc(µ(τ), w′). Assume
φ ∈ ω(w, µ(τ ′), v). By the definition of k2b, it holds
that K,w, v |= τ ′ says φ. Expanding the semantic
definition of says, we have that, for all w′ and w′′ such
that w ≤ w′ ≤µ(τ ′) w′′, it holds that K,w′′, v |=
φ. Now consider any w′′′ such that w′ ≤µ(τ) w′′′.
From the fact we previously established, it follows that
w′ ≤µ(τ ′) w′′′. One such w′′′ is w′′ itself, so we
have w′ ≤µ(τ ′) w

′′. We can then conclude for all w′

and w′′ such that w ≤ w′ ≤µ(τ) w′′, it holds that

25Although this is a forward reference to a theorem we haven’t proved yet,
that theorem does not rely on the current proposition, so there is no circularity.

K,w′′, v |= φ. By the semantic definition of says, we
have that K,w, v |= τ says φ holds. By the definition
of k2b, it holds that φ ∈ ω(w, µ(τ), v). Therefore
ω(w, µ(τ ′), v) ⊆ ω(w, µ(τ), v).

Theorem 1.

Proof: By structural induction on φ. All of the cases
except says and speaksfor are straightforward, because those
are the only two cases where the interpretation of formulas
differs in the two semantics.
• Case φ = τ says ψ. Suppose K,w, v |= τ says ψ. By

the definition of k2b, formula ψ ∈ ω(w, µ(τ), v). By the
belief semantics of says, it must hold that k2b(K), w, v |=
τ says ψ.

• Case φ = τ speaksfor τ ′. Suppose K,w, v |= τ speaksfor
τ ′. Consider any ψ in ω(w, µ(τ), v). By the definition
of k2b, it holds that K,w, v |= τ says ψ. From the
Kripke semantics of says and speaksfor, it follows that
K,w, v |= τ ′ says ψ. By the definition of k2b, it
thus also holds that ψ ∈ ω(w, µ(τ ′), v). So for all ψ,
if ψ ∈ ω(w, µ(τ), v), then ψ ∈ ω(w, µ(τ ′), v). Thus
ω(w, µ(τ), v) ⊆ ω(w, µ(τ ′), v). By the belief semantics
of speaksfor, it therefore holds that k2b(K), w, v |=
τ speaksfor τ ′.

Lemma 1. B,w, v |= τ says Γ implies Γ ⊆ ω(w, µ(τ), v).
Proof: Assume B,w, v |= τ says Γ. By the semantics

of says, we have that for all ψ ∈ Γ, it holds that ψ ∈
ω(w, µ(τ), v), hence Γ ⊆ ω(w, µ(τ), v).

Theorem 2.

Proof: By induction on the derivation of Γ ` φ. All of the
cases except those involving says and speaksfor are routine.
Let B,w, v |= Γ denote that, for all ψ ∈ Γ, it holds that
B,w, v |= ψ.

1) SAYS-LRI. Assume that Γ ` φ. We need to show
that B,w, v |= τ says Γ implies B,w, v |= τ says
φ. So assume B,w, v |= τ says Γ. By Lemma
1, Γ ⊆ ω(w, µ(τ), v). By Deductive Closure, φ ∈
ω(w, µ(τ), v). Therefore, by the semantics of says, we
have B,w, v |= τ says φ.

2) SAYS-LI. Assume that Γ ` τ says φ. We need to
show that B,w, v |= τ says Γ implies B,w, v |=
τ says φ. So assume B,w, v |= τ says Γ. By
Lemma 1, Γ ⊆ ω(w, µ(τ), v). By Deductive Closure,
τ says φ ∈ ω(w, µ(τ), v). By Says Transparency,
φ ∈ ω(w, µ(τ), v). Therefore, by the semantics of says,
B,w, v |= τ says φ.

3) SAYS-RI. Assume that τ says Γ ` φ. We need to
show that B,w, v |= τ says Γ implies B,w, v |=
τ says φ. So assume B,w, v |= τ says Γ. By
Lemma 1, Γ ⊆ ω(w, µ(τ), v). By Says Transparency,
(τ says Γ) ⊆ ω(w, µ(τ), v). By Deductive Closure,
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φ ∈ ω(w, µ(τ), v). Therefore, by the semantics of says,
B,w, v |= τ says φ.

4) SF-I. We need to show that B,w, v |= Γ implies
B,w, v |= τ1 speaksfor τ2. Assume B,w, v |= Γ.
Also assume that Γ ` τ2 says (τ1 speaksfor τ2). By the
inductive hypothesis, if B,w, v |= Γ, then B,w, v |=
τ2 says (τ1 speaksfor τ2). Thus B,w, v |= τ2 says
(τ1 speaksfor τ2). By the semantics of says, we have
τ2 says (τ1 speaksfor τ2) ∈ ω(w, µ(τ2), v). By Hand-
off, ω(w, µ(τ1), v) ⊆ ω(w, µ(τ2), v). By the semantics
of speaksfor, B,w, v |= τ1 speaksfor τ2 holds.

5) SF-E. We need to show that B,w, v |= Γ implies
B,w, v |= τ2 says φ. So assume B,w, v |= Γ. Also
assume that Γ ` τ1 speaksfor τ2 and Γ ` τ1 says φ.
By the inductive hypothesis, if B,w, v |= Γ, then
B,w, v |= τ1 speaksfor τ2 and B,w, v |= τ1 says
φ. So B,w, v |= τ1 speaksfor τ2 and B,w, v |=
τ1 says φ. By the semantics of speaksfor and says,
we have ω(w, µ(τ1), v) ⊆ ω(w, µ(τ2), v) and φ ∈
ω(w, µ(τ1), v). Thus φ ∈ ω(w, µ(τ2), v). Therefore, by
the semantics of says, B,w, v |= τ2 says φ.

6) SF-R. Straightforward from the reflexivity of ⊆ on
worldviews.

7) SF-T. Straightforward from the transitivity of ⊆ on
worldviews.

Theorem 3.

Proof: This theorem is actually a corollary of theorem 5,
because FOCALE generalizes FOCAL.

Theorem 4.

Proof: By induction on the derivation of Γ ` φ. The proof
generalizes the proof of theorem 2. The only interesting, new
cases are for subprincipals and group principals:

1) MEMBER. We need to show that if B,w, v |= Γ, then
B,w, v |= τ speaksfor {x : φ}. So assume B,w, v |= Γ.
Also assume that Γ ` φ[τ/x]. By the inductive hy-
pothesis, if B,w, v |= Γ then B,w, v |= φ[τ/x]. So
we have B,w, v |= φ[τ/x]. Therefore τ satisfies the
characteristic predicate defining group {x : φ}. By
definition, µ({x : φ}) =

⊔
{p | B,w, v[p/x] |= φ}.

One of the principals p in that join must be µ(τ). So
µ({x : φ}) = µ(τ) t

⊔
{p | B,w, v[p/x] |= φ}.

Let Π =
⊔
{p | B,w, v[p/x] |= φ}. Then we have

µ({x : φ}) = µ(τ) t Π; call this Fact 1. Consider
ω(w, µ({x : φ}), v). We can rewrite it, using Fact 1, as
ω(w, µ(τ)tΠ, v). By Group Principal (Belief), that can
be rewritten as the deductive closure of ω(w, µ(τ), v)∪
ω(w,Π, v). Again using Fact 1, we can rewrite that
as the deductive closure of ω(w, µ(τ), v) ∪ ω(w,Π, v).
So, following that chain of rewriting, we have that
ω(w, µ({x : φ}), v) equals the deductive closure of
ω(w, µ(τ), v) ∪ ω(w,Π, v). Since taking the deductive
closure can only add formulas, never remove them,
it follows that ω(w, µ(τ), v) ⊆ ω(w, µ({x : φ}), v).

Therefore, by the semantics of speaksfor, we have that
B,w, v |= τ speaksfor {x : φ}.

2) SF-GROUP. We need to show that B,w, v |= Γ im-
plies B,w, v |= {x : φ} speaksfor τ . So assume that
B,w, v |= Γ. Also assume that Γ, φ ` x speaksfor τ ,
and that x 6∈ FV (τ) ∪ FV (Γ). By the inductive hy-
pothesis, we have that if B,w, v |= Γ, φ then B,w, v |=
x speaksfor τ . But since we already have B,w, v |= Γ, it
follows that B,w, v |= φ implies B,w, v |= x speaksfor
τ . Note that B,w, v |= φ holds whenever v maps x
to a principal of which characteristic predicate φ holds.
Call that principal p. Then whenever φ holds of p, it
also holds that B,w, v |= p̂ speaksfor τ , hence by the
semantics of speaksfor, that ω(w, p, v) ⊆ ω(w, µ(τ), v).
Let Π = µ({x : φ}) =

⊔
{p | B,w, v[p/x] |= φ}.

By Group Principal (Belief), worldview ω(w,Π, v) is
the deductive closure of

⋃
p∈Π ω(w, p, v). Since for

all p ∈ Π, characteristic predicate φ holds of p, it
follows that ω(w, p, v) ⊆ ω(w, µ(τ), v). Let WΠ =(⋃

p∈Π ω(w, p, v)
)

. Thus WΠ ⊆ ω(w, µ(τ), v). The de-
ductive closure of WΠ is ω(w,Π, v). Are there any for-
mulas in ω(w,Π, v) that are not in ω(w, µ(τ), v)? Con-
sider ψ ∈ ω(w,Π, v), such that ψ 6∈

⋃
p∈Π ω(w, p, v).

Then there must be Γ ⊆
⋃
p∈Π ω(w, p, v), such that

Γ ` ψ. But since Γ ⊆
⋃
p∈Π ω(w, p, v) ⊆ ω(w, µ(τ), v),

it must be that ψ ∈ ω(w, µ(τ), v), because ω(w, µ(τ), v)
is a worldview hence is deductively closed. Thus, we
have ω(w,Π, v) ⊆ ω(w, µ(τ), v). By the semantics of
speaksfor, we have B,w, v |= {x : φ} speaksfor τ .

3) SF-SUBPRIN. By the semantics of speaksfor, we must
show that ω(w, µ(τ1), v) ⊆ ω(w, subw(µ(τ1), µ(τ2)), v)
holds. This follows immediately from the definition of
subw.

Theorem 5.

Proof: By induction on the derivation of Γ ` φ. This
proof has been mechanized in Coq.
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