
Submitted to:
PLACES 2025

© A. Bohosian & A. K. Hirsch
This work is licensed under the
Creative Commons Attribution License.

Choreographies as Macros

Alexander Bohosian
Department of Computer Science and Engineering

University at Buffalo, SUNY
Buffalo, NY, USA

asbohosi@buffalo.edu

Andrew K. Hirsch
Department of Computer Science and Engineering

University at Buffalo, SUNY
Buffalo, NY, USA

akhirsch@buffalo.edu

Concurrent programming often entails meticulous pairing of sends and receives between participants
to avoid deadlock. Choreographic programming alleviates this burden by specifying the system as a
single program. However, there are more applications than implementations of choreographies, and
developing new implementations takes a lot of time and effort. Our work uses Racket to expedite
building a new choreographic language called Choret. Racket has a powerful macro system which
allows Choret to reuse much of its infrastructure for greater functionality and correctness.

1 Introduction

Choreographic programming [see e.g., 15, 18, 20] is an emerging paradigm for designing and imple-
menting concurrent systems. Traditional languages require writing a program for each participant,
while avoiding mismatched sends and receives that may cause deadlock. This task grows more diffi-
cult with program size and the number of participants. In contrast, choreographic programs—or chore-
ographies—encode the system’s pattern of communication in a single program, rather than interweaving
several programs. This global view directly encodes the correct pairing of sends and receives, ensuring
deadlock freedom.

Since choreographic programming is constantly evolving, rapid prototyping is often desirable. Build-
ing a compiler from scratch—even a transpiler—takes time away from higher-level language deci-
sions. Ideally, one would reuse the existing infrastructure of a host language to provide a more ro-
bust implementation. Recently, there has been significant interest in doing so via choreographic li-
braries [16, 17, 21, 22]. However, every current choreographic library either has nontraditional semantics
or uses a nontraditional language design. These nontraditional design choices allow the library to avoid
issues arising from knowledge of choice, a technical aspect of choreographic programming. Ideally, we’d
be able to implement the traditional design and semantics of choreographies in a choreographic library.
To do this, a clever scheme is needed.

Such an implementation relies on the metaprogramming capabilities of the host language; in partic-
ular, the LISP family of languages offer a powerful metaprogramming system in the form of macros. In
many LISPs macros are user-defined functions which run during compilation, specifically in a macro-
expansion phase. These functions are written in LISP, akin to normal functions, and can perform arbi-
trary computation. Most importantly, macros can be imported as part of a module, allowing language
extensions to be used like normal libraries.

Intuitively, a choreographic language could be implemented as a set of LISP macros, using their
power to provide a choreographic library with traditional design and semantics. We prove this intuition
correct by building Choret, an embedded choreographic language in Racket. Racket is a LISP (specifi-
cally, an offshoot of Scheme) which offers a particularly sophisticated macro system for metaprogram-
ming, which is key for our implementation of knowledge of choice.

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/

2 Choreographies as Macros

We provide the following contributions: (a) in Section 2, we describe Choret via an example and
describe its syntax; (b) in Section 3 we describe the network (target) language of Choret, and describe
Choret’s compile-time semantics via Endpoint Projection; and (c) in Section 4 we describe how Racket’s
macro system allows us to implement Choret while maintaining traditional choreographic-language de-
sign and semantics. Finally, in Section 5 we survey related work, and in Section 6 we conclude.

2 Choreographies and Choret

Let us begin by considering an example concurrent application, and see how we would implement it both
as a traditional Racket program and in Choret. We use a traditional example: the bookseller. Here, a
Buyer wants to buy a book from a Seller. To do so, Buyer sends Seller the title of the book and then
Seller looks up the title in a catalog and sends back a price. Buyer then determines whether the price
is within their budget. If it is, then Buyer informs Seller of this choice and sends their address, and
Seller sends Buyer a date by which to expect the book. If the book is not within Buyer’s budget, then
they inform the Seller of this and the protocol ends.

Bellow, we can see a Racket program which implements this protocol in the traditional style. There
is one program for each of the Buyer and the Seller. These programs share a channel ch, which they
use to send and receive messages to and from each other. The sends and receives need to be perfectly
matched, and this needs to be done by hand: the programmer must check to make sure that they are
following the protocol precisely. We have made it easier to read our example by adding subscripts to the
sends and receives: sendn matches with recvn.

;; Code at Buyer
(send1 ch title)
(recv2 ch cost)
(if (<= cost budget)

(block
(send3 ch "buy ")
(send4a ch address)
(define date (recv5a ch)))

(block
(send3 ch " nevermind ")
(define response (recv4b ch)

)))

;; Code at Seller
(define title (recv1 ch))
(send2 ch (catalog title))
(define response (recv3 ch))
(if (eq? response "buy ")

(block
(define address (recv4a ch))
(send5a ch (ship title

address))
(block

(send4b ch " goodbye ")))

Note the painstaking way that the sends and receives need to be matched. In particular, note that there
are two copies of send3, each matched with the same recv3: because they are in different branches of
an if expression, only one of these sends will run. However, it further complicates the job of matching
these sends and receives. While this matching is easily possible to perform in this case, in larger programs
it can become very difficult.

This is where Choret (and choreographic programming more broadly) comes in. Rather than writing
a program for each of the participants, in Choret we would instead write one canonical program for the
entire system and then compile that single program into the two separate programs above. By doing
so, we match sends and receives syntactically, making the matching automatic. Thus, we would write
(define/<~ (at P x) (at Q e)) to say “evaluate the expression e on process Q, and then send the

A. Bohosian & A. K. Hirsch 3

Racket Expressions e
Binding Forms B ::= X | (at P x)
Choret Programs P ::= (chor (P ...) T ...)
Choret Expressions E ::= (at P e ...) | (~> (at P e) Q)

| (if (at P e) E1 E2) | (sel~> P ([l Q] ...) E)
| (let ([B E1] ...) E) | (let* ([B E1] ...) E)
| (set! (at P x) E)

Choret Terms T ::= (define B E) | (define/<~ (at P x) (at Q e))

Figure 1: Choret Syntax

resulting value to P, where it should be called x.” Here, (at Q e) just means “evaluate the expression e
on process Q.”

There is another kind of communication that occurs in Choret: communication that is used to prop-
agate knowledge of choice. We can see this above: when the Buyer determines whether the cost of the
book is within their budget, the Seller has no idea which choice the Buyer made. Instead, we see the
Buyer informing the Seller of their choice using the two copies of send3. The seller then branches
on this by asking if the result of recv3 is "buy", and behaving appropriately in each case. The Choret
program (sel~> P ([l Q]) E) means “P informs Q that they are taking the branch labeled l, and
then the entire system continues as E.” Combining this with the basic communication primitives above,
we can rewrite the example above into a single Choret program:

(chor (S B)
(define /<~1 (at S title) (at B title))
(define /<~2 (at B cost) (at S (catalog title))
(if (at B (<= cost budget))

(sel~>3 B ([S ’buy])
(define /<~4a (at S address) (at B address))
(define /<~5a (at B date) (at S (ship title address))

(sel~>3 B ([S ’do -not -buy])
(define /<~4b (at B response) (at S " goodbye "))))))

Not only is the choreography shorter and more concise, but it’s no longer possible to mismatch the
pairs of sends and receives. Because of this, choreographies offer an exciting property: deadlock freedom
by construction [5]. Thus, users of Choret can write their code without fear of deadlocks.

Formally, the syntax of Choret is given in Figure 1. Like Racket more generally, Choret is split into
terms (i.e., top-level definitions) and expressions (which return a value). Definitions, whether top-level
or local, can either bind global variables or local variables at some process P. For instance, the Choret
term (define/<~ (at P x) (at Q e)) binds the local variable x at process P.

By contrast, (at P e) and (sel~> P ([l Q]) E) are both expressions. Selection is more pow-
erful than previously suggested: P can send any number of labels to (distinct) processes, informing them
all of the taken branch. The expression (~> (at P e) Q) computes the value of e at P and then sends
the result to Q. Finally, we include traditional Racket expressions as Choret expressions, often extending
them to describe where computation is taking place via the at syntax.

Our treatment of knowledge of choice via selection is the tradition in choreographic programming-

4 Choreographies as Macros

Network N ::= . . . (All other Racket forms)
| (send P e) | (recv P)
| (choose! P l N) | (branch? P ([l N] ...))

Figure 2: Network Language Syntax

language design [15, 18, 20]. However, it leads to significant difficulties in developing choreographic
libraries. As we will see in Section 3, the use of selections means that the process of splitting a choreogra-
phy into different programs for each process requires multiple passes. However, most metaprogramming
systems do not make writing multipass transformations possible, much less easy. Therefore, most chore-
ographic libraries either change how they handle knowledge of choice or they perform the splitting at
runtime. Either choice allows them to avoid the multiple passes required at compile time. Racket’s macro
system allows us to uniquely provide the traditional design with its traditional semantics (see Section 4).

3 EPP and the Network Language

Choreographies give a global view of the system. However, in order to execute a choreography, we must
spit it into separate programs, one for each participant. In the choreographic literature, this transforma-
tion is referred to as Endpoint Projection (EPP). In this section, we describe the design of our network
language (that is, the target of endpoint projection) as well as the definition of endpoint projection itself.
We discuss their Racket implementation in Section 4.

The syntax of our network language can be found in Figure 2. Unlike Choret itself, which manually
reimplements the core Racket forms, our network language is described as four additions on top of
Racket itself (implemented as simple macros). The form (send P e) evaluates the Racket expression e
and sends the result to the process P, which is assumed to be different from the current process. Similarly,
the form (recv P) receives a value from the process P, returning that value. We propagate knowledge
of choice via the forms (choose! P l E) and (branch? P ([l E] ...)). The former informs P
about which branch was taken, while the latter allows P to tell the current process which branch to take.

We now almost have enough information to formally define EPP. However, one difficulty arises,
which is best described by example. Consider the following Choret program:

(chor (A B)
(define (at A x) ...)
(if (at A x)

(sel~> A [B l]
(at B "Left "))

(sel~> A [B r]
(at B "Right "))))

Here, we look at A’s boolean value and, if it’s true, B returns "Left", otherwise B returns "Right".
In order to allow this difference in B’s behavior, A informs B of which branch to take. Now, imagine
trying to project a program for B from this choreography. Projecting each branch of the if is easy: the
true branch projects to (branch? A [l "Left"]), the false to (branch? A [r "Right"]). These
each wait for a message from A and either return "Left" if the message is l (for the former) or return
"Right" if the message is r (for the latter), doing nothing otherwise. In order to give a single program

A. Bohosian & A. K. Hirsch 5

JEKA =

e . . . if E = (at A e ...)
(void) if E = (at P e ...) where P 6= A
(send Q e) if E = (~> (at A e) Q)
(recv P) if E = (~> (at P e) A)
(void) if E = (~> (at P e) Q) where P 6= A and Q 6= A
(if e JE1KA JE2KA) if E = (if (at A e) E1 E2)
JE1KA t JE2KA if E = (if (at P e) E1 E2) where P 6= A
(let ([X JE1KA] ...) JEKA) if E = (let ([X E1] ...) E)
(let ([x JE1KA] ...) JEKA) if E = (let ([(at A x) E1] ...) E)
(let ([_ JE1KA] ...) JEKA) if E = (let ([(at P x) E1] ...) E)

where P 6= A
(choose! Q1 l1
J(sel~> A ([l2 Q2] ...) E)KA)

if E = (sel~> A ([l1 Q1] [l2 Q2] ...) E)

(branch? P
([l1 J(sel~> P ([l2 Q2] ...) E)KA]))

if E = (sel~> P ([l1 A] [l2 Q2] ...) E)

J(sel~> P ([l2 Q2] ...) E)KA if E = (sel~> P ([l1 Q1] [l2 Q2] ...) E)
where P 6= A and Q1 6= A

Figure 3: Definition of Endpoint Projection (Selected Parts)

for B, we need a program which receives a message from A and takes both behaviors, doing nothing only
if the message is neither l nor r. We do this via merging. We define merging, written N1tN2, as follows:

N1 tN2 =

recursively merge if N1 and N2 are matching Racket forms
(send P e) if N1 = N2 = (send P e)
(recv P) if N1 = N2 = (recv P)
(choose! P l N′

1 tN′
2) if N1 = (choose! P l N′

1)
and N2 = (choose! P l N′

2)
(branch? P ([l1i N1i tN2 j] . . .

[l1k N1k] . . .
[l2k N2k]))

if N1 = (branch? P ([l11 N11] ...))
and N2 = (branch? P ([l21 N21] ...))
and l1i = l2 j

and ∀k,k′.l1k 6= l2k′

⊥ otherwise

The merge function looks intimidating, but the only complicated case is branch; every other case
merely checks to make sure that N1 and N2 are compatible before making a recursive call. In the case of
branch, we need to combine the possible branches. If both N1 and N2 have a branch for some label l,
then we recursively call merge on those branches. Any labels that either N1 or N2 have, but not both, are
simply kept. If we apply this to our example above, we compute

(branch? A ([l "Left"]))t(branch? A ([r "Right"])) =
(branch? A ([l "Left"] [r "Right"]))

which behaves exactly as desired.
We use the definition of merging to define endpoint projection in Figure 3. This describes how to

transform each of the forms of Choret into a network-language form. As an example, a choreographic
send (~> (at P e) Q) is transformed into (send Q e) for P and into (recv P) for Q. For any

6 Choreographies as Macros

process not involved, a Choret form will turn into (void), a Racket standard-library function which
returns “nothing.” Thus, every process only gets the information available to them in the choreography.

Note that Figure 3 only contains selected forms. The other forms are uninteresting; they recursively
call EPP on their subforms and then return an “obvious” Racket analog of themselves. This pattern can
be seen in the let lines of Figure 3.

Now that we have a mathematical definition of EPP, we can begin to implement it in Racket macros.
However, this leads to some complications: Racket’s macro system is powerful, but expressing compli-
cated, multi-pass transformations like EPP inside of them is still difficult. In Section 4, we introduce the
tricks and tips that the Racket community has put together for this problem and describe how we use
those tricks to implement Choret.

4 Racket Macro Expansion and EPP

We now explain the implementation of Choret. This implementation relies on the power of Racket’s
macro system to allow us to perform merging and EPP at compile time. Thus, we begin by providing
some background on the Racket macro system before finally describing the implementation of EPP using
that system.

4.1 Background on Racket Macros

Racket canonizes its own syntax into data called syntax objects. These syntax objects are Racket data
that represent Racket programs; macros are then simply functions that take and return syntax objects.
Syntax objects themselves contain not only the abstract-syntax tree of a program, but also information
such as scope and source locations. Thus, macros form a powerful metaprogramming facility.

Racket’s macro expansion is performed top-down, outermost to innermost, and fully expands all
macros to their core forms. Thus, a macro “sees” its arguments in unexpanded form. While this is
normally desirable, sometimes a programmer wants a macro to operate on expanded output. In order
to do this, the macro calls local-expand, which invokes the macro expander directly. Calling local-
expand on a syntax object returns its full expansion, which can then be parsed and analyzed using
Racket’s syntax-case form.

The Racket core form quote-syntax turns data into a syntax object. Syntax objects obtained this
way retain most of their lexical information (i.e. scope sets) [1], though certain scopes are pruned. How-
ever, a programmer can force quote-syntax to preserve all scopes using the #:local keyword. Since
quote-syntax is defined as a core form, the macro expander will not touch it or the data it is transform-
ing. Thus, programmers can use quote-syntax to prevent the macro expander from expanding some
syntax, preserving it for other macros to see.

Finally, sometimes a programmer wants to communicate information across macros nonlocally; for
instance, they may want to allow the expansion of one macro to determine how another expands globally.
To do so, they can store that information in a syntax parameter. Syntax parameters allow for dynamic
macro time bindings, which can be used to update a binding for expansions within an entire branch of
the syntax tree.

4.2 The Implementation of EPP

In order to implement select-and-merge EPP as a library during compile time, we take full advantage of
the Racket macro system. The top-level chor macro creates a syntax parameter representing the process

A. Bohosian & A. K. Hirsch 7

currently being expanded. It then loops through all of the processes in the choreography, expanding its
body once for each process, setting its syntax parameter appropriately each time.

Most other macros in Choret don’t use local-expand and instead directly rearrange them accord-
ing to the EPP specification from Section 3, implicitly relying on the macro expander to expand their
subforms. As described in that specification, they produce programs in our network language, which is
also a collection of macros.

For most of Choret’s expressions, this works beautifully. However, selections create branches,
which need to be merged later. If we allowed the branch macro to be expanded fully to its core forms,
the merge macro would not be able to detect when two branches need to be merged. Thus (branch?
P ([l E])) expands to another branch? form wrapped with quote-syntax, with the E subform
expanded, like (quote-syntax (branch? P ([l JEKA])) #:local). The merge macro can then
look for these hidden branches without fear that they will be expanded away by Racket.

All together, this design allows us to provide a traditional select-and-merge choreographic lan-
guage design without requiring EPP to be performed at runtime. Other choreographic libraries, such
as HasChor [21], mix the semantics of their network languages with EPP, allowing them to project the
appropriate branch when required rather than performing full merges. This means two things. First,
every process sees the entire choreography, which may not be appropriate in mixed-trust settings. Sec-
ond, EPP can now block the execution of a program, potentially slowing down a system considerably.
However, Racket’s type system enables Choret to perform EPP fully at compile time.

5 Related Work

5.1 Choreographic Programming

Choreographic programming emerged from the process-calculus and session-type communities about
ten years ago [4, 5, 18, 20]. Since that time, most of the work has been exploring theoretical aspects
of EPP in lower-order settings: there was no ability to create subroutines or functions [5, 7–10, 13,
19]. Recently a fair amount of interest has come up in functional choreographic programming, which
combines choreographic programming languages with λ calculi to allow for program abstraction and
reuse [6, 14, 15]. In particular, this work is inspired by Pirouette, the first functional choreographic
programming language [15].

As an outgrowth on the work on functional choreographic programming, many people have begun to
experiment with embedded choreographic languages. This was started by HasChor [21], which embed-
ded a choreographic programming language inside of Haskell using a freer monad. This method made
it easy to implement a choreographic language. However, it lead to an unusual situation: endpoint pro-
jection was no longer a compile-time activity, but something that happened at runtime whenever a node
needed the next line of its instructions. This methodology, with slight variations, has since been adapted
by other embedded implementations of choreographic languages [16, 22].

The closest work to this is Klor, which is an embedded implementation of choreographies in Clojure,
another Scheme-like language [17]. Like our work, Klor uses macros to implement a choreographic
language inside of a LISP-like language with EPP at compile time. However, Klor handles knowledge
of choice significantly differently. Whereas we, like most of the choreographic literature [6, 11, 14, 15,
18, 20], use selection messages to encode knowledge of choice, Klor instead uses a relatively new idea:
agreement types [3]. These allow any data to be located at a collection of processes, and communication
adds a process to that collection. When a choreography branches on data, then, any process in that
collection knows which path to take. Doing so allows Klor to avoid merging, and therefore avoid the

8 Choreographies as Macros

need for local-expand. We, in contrast, choose to implement the traditional approach to knowledge
of choice in choreographies. We are thus the only embedded implementation of choreographies with
traditional select-and-merge EPP at compile time.

5.2 Embedded Languages via Racket Macros

The defining feature of Racket is its “Languages as Libraries” design, which entails an API for extending
the language. A good example is Typed Racket, a sister language of Racket implemented entirely as a
normal Racket library [23, 24].

A characteristic feature of many LISPs, like Racket, is the ability to easily embed domain specific lan-
guages (DSLs) using macros. However, macros in other LISPs tend to have certain issues. For example,
macros in many LISPs use symbols—essentially immutable strings—to encode identifiers. However, this
allows macros to ignore scope when manipulating identifies: a macro may introduce identifiers which
accidentally capture identifiers in the macro’s body, or it may introduce identifiers which are accidentally
captured by bindings in the macro’s body. Such problems, among others, are often referred to as macro
hygiene. Racket largely solves such issues using scope sets [12], which associates with each identifier a
set of scopes. Racket uses such scope sets to determine the correct bindings for the expanded code.

While scope sets ensure macro hygiene, it is sometimes desirable to use unhygienic macros. For
example, Choret sometimes needs to communicate which participant is currently being projected to the
macros that perform EPP. We are able to do this by using Racket’s syntax-parameter [2] macro, which,
when expanded, updates a compile time binding that is only visible in the body of the macro. Thus, we
are able to selectively ignore hygiene when necessary, while writing hygenic macros by default.

6 Conclusion

Choreographies are a promising paradigm for concurrent programming. However, in order for them
to live up to their promise, the community needs to rapidly develop and prototype new choreographic-
language designs. Choreographic libraries are a promising method for doing so, but they rely on the
metaprogramming capabilities of a host language. Because these capabilities tend to be weak, previ-
ous choreographic-library designers have developed clever new semantics for choreographic languages
which can be implemented with those anemic capabilities. However, that has left the most-common de-
sign for choreographic languages—the traditional select-and-merge semantics—without the rapid proto-
typing advantages of choreographic libraries.

By developing Choret, we have shown that Racket’s macro system is strong enough to bridge this
gap. In particular, we have implemented Choret as a choreographic library in Racket that performs EPP
at compile time. While Choret uses advanced features of Racket’s macro system, the implementation is
quite small—only 370 lines of code (excluding comments and tests). We hope that this small size means
that other choreographic-language designers will build on Choret in order to test out their designs.

References

[1] 3.21 Syntax Quoting: quote-syntax. Available at https://docs.racket-lang.org/
reference/Syntax_Quoting__quote-syntax.html. Accessed March 3rd, 2025.

[2] Eli Barzilay, Ryan Culpepper & Matthew Flatt (2011): Keeping it clean with syntax parameters.
Proc. Wksp. Scheme and Functional Programming.

https://docs.racket-lang.org/reference/Syntax_Quoting__quote-syntax.html
https://docs.racket-lang.org/reference/Syntax_Quoting__quote-syntax.html

A. Bohosian & A. K. Hirsch 9

[3] Mako Bates & Joseph P. Near (2024): We Know I Know You Know; Choreographic Program-
ming With Multicast and Multiply Located Values. Available at https://arxiv.org/abs/2403.
05417.

[4] Marco Carbone & Fabrizio Montesi (2012): Merging Multiparty Protocols in Multiparty Chore-
ographies. In Simon J. Gay & Paul Kelly, editors: PLACES 2012, EPTCS 109, pp. 21–27,
doi:10.4204/EPTCS.109.4.

[5] Marco Carbone & Fabrizio Montesi (2013): Deadlock-Freedom-by-Design: Multiparty Asyn-
chronous Global Programming. In Roberto Giacobazzi & Radhia Cousot, editors: POPL 2013,
ACM, pp. 263–274, doi:10.1145/2429069.2429101.

[6] Luís Cruz-Filipe, Eva Graversen, Lovro Lugovic, Fabrizio Montesi & Marco Peressotti (2022):
Functional Choreographic Programming. In Helmut Seidl, Zhiming Liu & Corina S. Pasare-
anu, editors: ICTAC 2022, Lecture Notes in Computer Science 13572, Springer, pp. 212–237,
doi:10.1007/978-3-031-17715-6_15.

[7] Luís Cruz-Filipe, Kim S. Larsen & Fabrizio Montesi (2017): The Paths to Choreography Extrac-
tion. In Javier Esparza & Andrzej S. Murawski, editors: FOSSACS 2017, Lecture Notes in Com-
puter Science 10203, pp. 424–440, doi:10.1007/978-3-662-54458-7_25.

[8] Luís Cruz-Filipe & Fabrizio Montesi (2016): Choreographies in Practice. In Elvira Albert & Ivan
Lanese, editors: FORTE 2016, Lecture Notes in Computer Science 9688, Springer, pp. 114–123,
doi:10.1007/978-3-319-39570-8_8.

[9] Luís Cruz-Filipe & Fabrizio Montesi (2016): A Core Model for Choreographic Programming. In
Olga Kouchnarenko & Ramtin Khosravi, editors: FACS 2016, Lecture Notes in Computer Science
10231, pp. 17–35, doi:10.1007/978-3-319-57666-4_3.

[10] Luís Cruz-Filipe & Fabrizio Montesi (2017): On Asynchrony and Choreographies. In Massimo
Bartoletti, Laura Bocchi, Ludovic Henrio & Sophia Knight, editors: EPTCS 2017, EPTCS 261, pp.
76–90, doi:10.4204/EPTCS.261.8.

[11] Luís Cruz-Filipe & Fabrizio Montesi (2020): A Core Model for Choreographic Programming.
Theor. Comp. Science 2020 802, pp. 38–66, doi:10.1016/j.tcs.2019.07.005.

[12] Matthew Flatt (2016): Binding as sets of scopes. In: Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’16, Associa-
tion for Computing Machinery, New York, NY, USA, p. 705717, doi:10.1145/2837614.2837620.
Available at https://doi.org/10.1145/2837614.2837620.

[13] Saverio Giallorenzo, Fabrizio Montesi & Maurizio Gabbrielli (2018): Applied Choreographies. In
Christel Baier & Luís Caires, editors: FORTE 2018, Lecture Notes in Computer Science 10854,
Springer, pp. 21–40, doi:10.1007/978-3-319-92612-4_2.

[14] Eva Graversen, Andrew K. Hirsch & Fabrizio Montesi (2024): Alice or Bob?: Process
Polymorphism in Choreographies. Journal of Functional Programming (JFP) 34, p. e1,
doi:10.1017/S0956796823000114.

[15] Andrew K. Hirsch & Deepak Garg (2022): Pirouette: Higher-Order Typed Functional Choreogra-
phies. In: POPL 2022, 6, pp. 1–27, doi:10.1145/3498684.

[16] Shun Kashiwa & Lindsey Kuper (2024): ChoRus: Library-Level Choreographic Programming
in Rust. In: Choreographic Programming (CP). Available at https://users.soe.ucsc.edu/
~lkuper/papers/chorus-cp24.pdf.

https://arxiv.org/abs/2403.05417
https://arxiv.org/abs/2403.05417
https://doi.org/10.4204/EPTCS.109.4
https://doi.org/10.1145/2429069.2429101
https://doi.org/10.1007/978-3-031-17715-6_15
https://doi.org/10.1007/978-3-662-54458-7_25
https://doi.org/10.1007/978-3-319-39570-8_8
https://doi.org/10.1007/978-3-319-57666-4_3
https://doi.org/10.4204/EPTCS.261.8
https://doi.org/10.1016/j.tcs.2019.07.005
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1145/2837614.2837620
https://doi.org/10.1007/978-3-319-92612-4_2
https://doi.org/10.1017/S0956796823000114
https://doi.org/10.1145/3498684
https://users.soe.ucsc.edu/~lkuper/papers/chorus-cp24.pdf
https://users.soe.ucsc.edu/~lkuper/papers/chorus-cp24.pdf

10 Choreographies as Macros

[17] Lovro Logović & Sung-Shik Jongmans (2024): Klor: Choreographies for the Working Clojurian.
In: Choreographic Programming (CP). Available at https://pldi24.sigplan.org/details/
cp-2024-papers/15/Klor-Choreographies-for-the-Working-Clojurian.

[18] Fabrizio Montesi (2013): Choreographic Programming. Ph.D. thesis, IT University of
Copenhagen. Available at https://www.fabriziomontesi.com/files/choreographic_
programming.pdf.

[19] Fabrizio Montesi (2015): Kickstarting Choreographic Programming. In Thomas T. Hildebrandt,
António Ravara, Jan Martijn E. M. van der Werf & Matthias Weidlich, editors: LNPSE 2015,
Lecture Notes in Computer Science 9421, Springer, pp. 3–10, doi:10.1007/978-3-319-33612-1_1.

[20] Fabrizio Montesi (2022): Introduction to Choreographies. Cambridge University Press,
doi:10.1017/9781108981491.

[21] Gan Shen, Shun Kashiwa & Lindsey Kuper (2023): HasChor: Functional Choreographic Pro-
gramming for All (Functional Pearl). In: International Conference on Functional Programming
(ICFP), doi:10.1145/3607849.

[22] Gan Shen & Lindsey Kuper (2024): Toward Verified Library-Level Choreographic Programming
with Algebraic Effects. In: Choreographic Programming (CP). Available at https://arxiv.org/
abs/2407.06509.

[23] Sam Tobin-Hochstadt & Matthias Felleisen (2008): The design and implementation of typed
scheme. In: Proceedings of the 35th Annual ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, POPL ’08, Association for Computing Machinery, New York,
NY, USA, p. 395406, doi:10.1145/1328438.1328486. Available at https://doi.org/10.1145/
1328438.1328486.

[24] Sam Tobin-Hochstadt, Vincent St-Amour, Ryan Culpepper, Matthew Flatt & Matthias Felleisen
(2011): Languages as libraries. In: Proceedings of the 32nd ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’11, Association for Computing Ma-
chinery, New York, NY, USA, p. 132141, doi:10.1145/1993498.1993514. Available at https:
//doi.org/10.1145/1993498.1993514.

https://pldi24.sigplan.org/details/cp-2024-papers/15/Klor-Choreographies-for-the-Working-Clojurian
https://pldi24.sigplan.org/details/cp-2024-papers/15/Klor-Choreographies-for-the-Working-Clojurian
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://www.fabriziomontesi.com/files/choreographic_programming.pdf
https://doi.org/10.1007/978-3-319-33612-1_1
https://doi.org/10.1017/9781108981491
https://doi.org/10.1145/3607849
https://arxiv.org/abs/2407.06509
https://arxiv.org/abs/2407.06509
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1993498.1993514
https://doi.org/10.1145/1993498.1993514

	Introduction
	Choreographies and Choret
	EPP and the Network Language
	Racket Macro Expansion and EPP
	Background on Racket Macros
	The Implementation of EPP

	Related Work
	Choreographic Programming
	Embedded Languages via Racket Macros

	Conclusion

