Compositional Security Definitions for Higher-Order Where
Declassification - Technical Appendix

March 1, 2023



1 Structure of the document:

This document might be updated from time to time to make it more readable. If you are using an old
version, consider getting checking if there is a new version at https://gitlab.mpi-sws.org/Quarkbeast/
lambda-where-fullproofs/-/raw/main/Technical_Appendix.pdf.

1. In the section [Structure of the document:| we present the structure of this document.

2. Some proofs were still done with paralocks in mind. In the section [Flow locks and Paralocks we talk
about the relationship between Flow Locks and Paralocks. In particular we show that for Flow Locks
policies important definitions coincide with the corresponding Paralocks definitions which allows us
to freely switch between them.

3. In the section we formally present the language we use.

4. In section [Properties of the policy ordering| we prove properties of the policy language. In particular
we prove that paralocks policies and therefore also flow locks policies have a lattice structure.

5. In section we prove weakening.
6. In section we prove type safety.

7. In section [Logical relations| we present the logical relations model. Note that the binary relation
presented in this section is a logical relation already restricted to firstorder state which we do not
present in the paper. The model of the logical relation from the paper can be found in section
lorder observations:

8. In section we prove the fundamental theorem of the logical relations presented in the previous
section. Some of the proofs differ slightly for the version of the logical relation presented in the paper.
These proofs can be found in section [Higher order observations:|

9. In section [Higher order observations] we extend the logical relation presented in to deal with
higher-order observations. This is the logical relation presented in the paper. We also present updated
versions of the proofs from which deal with the changes in the definition where necessary.

10. In section [Knowledge based security| we prove that the knowledge based Flow Lock security property
follows from our notion of security.

2 Flow locks and Paralocks

While the paper only uses Flow locks [2] [4] we originally based our work on paralocks [4]. Consequently
some of the proofs in this document, mainly those relating to the lattice structure of the policy language in
still use this more general setting. In this section we prove that the ordering on flow locks and
paralocks policies, which are defined differently, coincide. If nothing else is specified every definition related
to policies is identical to [4].

The main difference between full paralocks policies and flow locks policies is that paralocks policies can
use locks that are parameterised by actors. Therefore paralocks clauses have the form ¥x.7 = a where the
locks in the lock set ~ may use some of the actor variables in X and a may itself be an actor variable from
X.

Flow-locks clauses can be characterised as a subset of paralocks clauses. They are paralocks clauses
where locks (0, 01,07, etc.) are not parameterised and clauses remain unquantified.

For the proofs we use the characterisation of flow-lock policy ordering from the paralocks paper [4].
There the ordering on flow lock policies is defined as logical implication of the policies when interpreted
as horn formulas. That is a flow lock policy p = (p1,...pn) is below a flow lock policy q = (q1,.-.,qm)
(written p C q) where for all 1 <i<n and 1 <j < m the clauses p; (or qj) have the form *, = a; and
L, = aj respectively, if /_\pi — /\pj when = is read as logical implication.

1

We will show that this notion o]f a policy ordering coincides with the policy ordering for paralocks policies.
The ordering on paralocks policies is defined based on an ordering on clauses C. A paralocks policy p is
below a paralocks policy q (written p C q) if for every clause cq in q there is a clause ¢, in p such that
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¢p C cq. The ordering = on clauses is the least partial order containing the proto-inclusion T which is
defined as

¢ = ¢’ up to a-renaming of V-bound actors, deletion of unused quantifiers, reordering of quantifiers

7 refl
cCc
11 C %
subset
Vai,...,an.21 = aC Vag,...,aQpn.20 = a
subst
VYag, ai,...,an.2 = aC Vay,...,an. (X2 = a)lag := b]

We know that the least reflexive, transitive relation containing a relation R is the relation R* defined as

R x R*yz
" refl-* Y " Y trans-
R* x x R* x z

ES

Hence C=C*. We will use both of these characterisations in the future.
Note that for flow locks policies, which do not contain quantifiers and actor variables, only the rule
subset is relevant. Therefore for flow locks the ordering on clauses simplifies to the following rule:

11 C X
Z1:>QEZQ$C1

subset-FlowLocks

With this rule in mind this ordering on paralocks policies corresponds exactly to the ordering of flow
locks policies we present in the paper which is how Broberg and Sands define ordering on flow locks policies
in [2 B3] as well. In the following we show that this definition coincides with the logical interpretation.

Lemma 2.1. If c=2X = b and ¢’ = 2’ = b’ are flow lock clauses and ¢ C ¢’, then ¢ — ¢’

Proof. By assumption ~ C >" and b = b’. Assume 2. We have to show b. By c it suffices to show ~. We
already know X’ which is a superset of assumptions of 2. O

Lemma 2.2. Let p, q be flow lock policies with p C q. Then for all clauses ¢; in g, there is a clause p; in
p such that pj C gj.

Proof. Assume this is not the case. Then for all pj, p; must be true. Otherwise the implication p; — gy
would trivially hold for all ;. Because all p; are true we get that all g; must be true from p = ¢. But then
for all 1,j p; — q; is true as q; is true. Contradiction. O

The converse direction is easy.

Lemma 2.3. Let p and g be flow lock policies such that for all clauses q; € g there is a clause p; € p such
that p;i C gi. Then p C q

Proof. As we know for all i that p; C qi we have that pi — qi. Hence we have for all i that p — qi. Hence
P — A gi which is the same as p C q. O

This also means that join and meet of normal paralocks policies are also join an meet for flow lock
policies.

Finally we look at specialization: For a flow lock policy p and a set of flow locks ~ we have p(X) :=
{I\Z=alX = aep}

We will consider a different than the standard equality relation on policies and clauses. Instead of
syntactic equality we consider a notion of equality ~ that characterises equal information flow restrictions.
It is defined as x ~y:=x Cy Ay C x.

Lemma 2.4. Flow lock specialization is identical to normal paralocks specialization on flow lock policies
modulo ~.

Proof. Let p be a flow lock policy and = a set of flow lock. Then all clauses ¢ € p have the form >, = b,
where b. is not bound because there are no quantifiers in flow lock policies. Let »~; C ~. Then the only
set matching >, with any substitution is 2, and the substitution is (). Because there are no bound actors
in 2, there are no bound actors in >; and hence the domain of any substitution used for matching > is



empty. The only substitution with an empty domain is §). For a set Z,, to match ¥; with ) we need to have
Zm(w) =21 Inm ((D) = 2, and hence 2, = 1.

Hence‘p(Z) :{Zgib‘zl gZ,Z/:ZlUZJ,Z’ibEp}:{Z’\Zl :>b|>:1 QZ,Z’:>b€p}

All that remains to be shown is {ZX'"\2 = a|2' = aep}={Z\Z, = b|2, C X, Y =beph

As ¥ C ¥ we have {Z\Z = a|Z' = aep} C{Z'\Z; =b|Z; CL, 2 =Dbep} Hence for all ¢ €
{IN\Z=al|ll = aep}thereis ac’ € {X'\X; =b|Z, CX, 7' = b€ p} (namely c), such that ¢’ — c.
Hence {X"\Z; = b|2, C L, =>beptC{Z\Z=alX = a€p}

On the other hand when ¢ = “ \Z; = b, € {{'\Z; = b|Z; C L,/ =bep}, then ¢/ = Z N\ =
be € {\Z=a|lZ = aep} where X; C ~. Hence .\~ C ~.\Z; and therefore ¢’ C c. Hence
N\Z=all =aeptC{Z\Z, =>blL; CL 2 =beph O

Because the flow lock policy and the paralocks policy viewpoint are equivalent for flow lock policies we
will switch freely between these to viewpoints. In particular we will use some theorems proved for paralocks
policies for flow lock policies.

3 The language

The language we are working with has two sets of types that are mutually inductively defined. We have
a set of normal types (normally denoted by A,B,A’,A4,..., etc.) and annotated types (t,t(,7/,..., etc.)
which are normal types annotated with a policy as described in the previous section. This is essentially the
same setup as in the FG Type system [5].

Definition 3.1 (Types).

Types A unit | Ty + To | Ty X To | ref T] T =5 o | N
Annotated Types T,7;,To u= AP
where p is a policy and X is a set of locks.

We lift the ordering C on policies to an ordering on policy annotated types and paralocks policies in the
following way:

Definition 3.2.
APCp'2pCyp’
pCAP 2pLCyp/
AP C Bp’ é‘p C P/
For T = AP we define t(2) £ AP(*),

Definition 3.3 (Expressions and values). Assume a countable infinite set of memory locations £ and a
countable infinite set of variables V. Source expressions are defined as follows:

Variables X e Vv
Numbers n € N
Expressions e, e’,e” x| ()In|Ax.e| (e, e’)|fst (e) |snd(e)
inl (e) |inr(e) |case e of |inl (x) = e’ |inr(y) = e
ee'|new(e,T) | lele:=¢’
open 0 in e|close 0 in e|when o then e else e’

"

We extend source expressions with some intermediate expressions to get runtime expressions:

Locations 1 e &L
exp e,e’,e” == ...|l|ethen unopen 0| e then unclose o

We also define a set V of values:

Vo ovv ou= Ax.e|(v,Vv)|fst(v) |snd (v) [inl (V) [inr(v) [ ()]|1|n

Note: We sometimes use the short version Case(e,x.ej,y.es) instead of
case € of |inl (X) = e |inr (Y) = eo.

We also sometimes use the old notations opened(o) in e and closed(c) ine
instead of € then unopen 0" and € then unclose O



We define substitutions on expressions:

Definition 3.4 (Capture avoiding substitutions).

x[x—el£e
nxe—el=n
yx—el =y if x £y
(Ay.e)lx — el = Ay.e'[x — e] ify#£x
(Ax.e’)[x — e] & Ax.e’
(e e”)[x— el £ (e'[x > e]) (e"[x el
Ox—el =)
Ix—el 21
(inl (e"))[x — €] = inl (e'[x > €])
(inr (e”))lx = e] = inr (e'[x — el])
(e, e”)x el 2 (e'[x — e, e”[x — e])
(fst (e/))[x > €] £ fst (e/[x — ¢€])
(snd (e"))[x — €] £ snd (e'[x — €])
case e’ of case e'[x — e] of
linl (y) = e; [x—el 2 |inl(y) = elx+ el ify#x#y’
linr (y") = ez linr (y') = ealx > €]
case e’ of case e'[x — e] of
linl(x) =>e1 | x—el 2 |inl(x)=e ify #x
linr (y) = ey linr (y) = ealx — el
case e’ of case e'[x — e] of
linl(y) =e; | x—el2 |inl(y) = elx+ el ify#x
linr (x) = ez linr (x) = ez
(new (e’,T))[x — €] £ new (e'[x — €], T)
(le)x — el £ 1(e'[x — e])
(e :=e")[x el 2 (e'[x — e]) :=e"[x — e]
(open o in €’)[x — €] £ open o in e’[x — €]
(close 0 in e’ [x — €] £ Close 0in e [X — e
(e’ then unopen 0)[x — €] £ e’[x — €] then unopen o
(e’ then unclose o [x — €] £ e’[x — e] then unclose o
(when o then e’ else e”)[x > €] £ when o then e’[x — €] else e [x — €]

As is customary we regard a-equivalent terms as equal. Hence we can freely rename bound variables.
In particular this means that we can assume that bound variables are different from other bound variables.
We also work with Barendregt’s variable convention:

7If My, ..., My occur in a certain mathematical context (e.g. definition, proof), then in these
terms all bound variables are chosen to be different from the free variables.”[Il, page 26]



Definition 3.5 (Free Variables).

FV(close o in e’

FV(e’ then unopen o
FV(e’ then unclose &

FV(()when o then e’ else e

Lemma 3.1. If x € FV(e'), then e'[x — e] = ¢’.

Proof. By induction on e’.

e’ =y: By assumption x ¢ FV(y), so x € {y}, so x #y. So [e/xly =y.
e’ =n. We have [e/x]n =n anyway.

e’ =Ay.e”. Due to our assumptions about variables we can assume that y # x. Hence [e/x](Ay.e”) =
Ay.le/x]e”. We know x ¢ FV(Ay. e”). Hence x ¢ FV(e”)\{y}. Since x #y, x ¢ FV(e”). By induction
[e/x]e” =e”. Hence [e/x](Ay.e”) = A y.[e/x]e” =Ay. e”.

e/ = e es. Since x € FV(e; ex) we know x ¢ FV(ey) and x ¢ FV(ez). By induction therefore
[e/x]e; = e; and [e/x]es = es. Hence [e/x](e1 e2) = ([e/x]e1) ([e/x]ex) = eq es.
e’ =(): [e/x]() = () anyway.
e’ =1 [e/x]l =1 anyway.
e’ = 1inl e”: By assumption x € FV(inl e”). Hence x € FV(e”). Hence by induction [e/x]e” = e”.
Consequently [e/x](inl e”) = inl ([e/x]e”) =inl e”.

"

¢/ = inr e’: By assumption x € FV(inr e”). Hence x € FV(e”). Hence by induction [e/x]e” = e”.
Consequently [e/x](inr e”) = inr ([e/x]e”) = inr e”.

e’ = (er,ez). Since x ¢ FV((e1,ez)) we know x ¢ FV(e;) and x € FV(ez). By induction therefore
le/x]e1 = e; and [e/x]ex = es. Hence [e/x]((e1, e2)) = ([e/x]er, [e/x]e2) = (e1, €2).

e’ = fst(e”): By assumption x ¢ FV(fst(e”)). Hence x € FV(e”). Hence by induction [e/x]e” = e”.
Consequently [e/x](fst(e”)) = fst([e/x]e”) = fst(e”).

e’ = snd(e”): By assumption x ¢ FV(snd(e”)). Hence x € FV(e”). Hence by induction [e/x]e” = e”.
Consequently [e/x](snd(e”)) = snd([e/x]e”) = snd(e”).



e ¢’ = case(eg,y.e1,y’.e3). Due to our assumptions about variables we can assume that y # x # y'.
Hence [e/x](case(eg,y.e1,y’.e2)) = case(le/x]eg,y.le/x]e1,y’.[e/x]es). We know x ¢ FV(case(ep,y.e1,y’.e2)).
Hence x € FV(eg) UFV(e1)\{y} UFV(ex)\{y’}. Since x #y and x Zy’, x & FV(ep),x & FV(e1),x ¢
FV(ez). Consequently by induction [e/x]ey = e, [e/x]e; = e1, and [e/x]es = eo. Thus [e/x](case(eg,y.e1,y’.e2)) =
case([e/x]eg, y.[e/x]e1,y".[e/x]ez) = case(eo,y.e1,Y.e2).

e ¢/ =new(e”’,1). FV(new(e’, 1)) = FV(e”). Hence x ¢ FV(e”). Therefore by induction [e/x]e” = e”.
Consequently [e/x]new(e’,t) = new([e/x]e”,T) = new(e’,T).

e e =le
Consequently [e/x](le”) =!([e/x]e”) =le

”: By assumption x ¢ FV(le”). Hence x ¢ FV(e”). Hence by induction [e/x](e”) = e”.

1
e ¢/ =e; := ey Since x ¢ FV(e; := e3) we know x € FV(ey) and x ¢ FV(ez). By induction therefore
[e/x]e; = e; and [e/x]es = es. Hence [e/x](e1 :=e3) = ([e/x]e1) := ([e/x]es) = e; := es.

e ¢/ = open o in e”: By assumption x ¢ FV(open o in e”). Hence x ¢ FV(e”). Hence by induction
[e/x]e” = e”. Consequently [e/x](open o in e”) = open o in [e/x]e” = open o in e”.

e ¢/ =close o in e”: By assumption x ¢ FV(close o in e”). Hence x ¢ FV(e”). Hence by induction
[e/x]e” = e”. Consequently [e/x](close o in e”) = close o in [e/x]e” = close o in e”.

e ¢/ = opened oine”: By assumption x ¢ FV(opened oin e”). Hence x ¢ FV(e”). Hence by induction
[e/x]e”" = e”. Consequently [e/x](opened o in e”) = opened o in [e/x]e” = opened o in e”.

e ¢/ =closed o in e”: By assumption x ¢ FV(closed o in e”). Hence x ¢ FV(e”). Hence by induction
[e/x]e” = e”. Consequently [e/x](closed o in e”) = closed o in [e/x]e” = closed o in e”.

e ¢/ =when o then e; else e;. Since x ¢ FV(when o then e; else e3) we know x ¢ FV(e;) and x &
FV(es). By induction therefore [e/x]e; = e; and [e/x]es = e5. Hence [e/x](when o then e else ex) =
when o then [e/x]e; else [e/x]e; = when o then e; else es.

O

3.1 Evaluation and traces
Definition 3.6.

Observations w = open(0)|close(o)|unopen(c)|unclose(o)|lc(v)
where o is a lock, 1 is a memory location and v € V.

w;x/

The judgement > + e, S == e’, S’ (or in some of the proofs still e,~,S > e’,S’, w, ") means that

expression e evaluates in one step to expression e’ in lock-set ~ and state S resulting in state S’ and
observable output w. X’ is the effective lock set at the point of reduction. The state S is a finite partial
function from heap locations to pairs of values and types. If for a heap S we have (1 — (v, 7)) € S we say
that S(1) =v. We also define type(S,1) = .

3.1.1 Small step evaluation

NOTE: For the paper we made a change in notation. In most of the proofs
we still use a different notation for small-step evaluation, namely >. So
ke, S CiN e/, S"and e,Z,S = ¢e’,S’, w, X mean the same thing. We are
working on updating this document with the new notation and apologize for
this inconsistency.

Z}—e7SL—£/>e”7S’ ZI—e',S%e”,S’
05/ EAppl L EAppr
Shee,S==2¢e"¢e S S F(Ax.e)e’, S == (Ax.e)e”, S’
Z}—e,S%e”,S’
— EAppBeta — EPairl
Ik (Ax.e)v, S == [v/xle, S Tk (e e), S == (e",¢), S’



/
w; X

She S==2¢S Zl—e7SL—E>e',S’
o EPairr o EFst
S (v,e), S == (v,e'), S’ Ik fst(e), S == fst(e’), S’

ke 'S Lt e, S’
5 EFstBeta o ESnd
S Ffst((v,v'), S =V, S Y Fsnd(e), S == snd(e’), S’

ke S ERAN e/, S
s ESndBeta — ElInl
> Fsnd((v,v)), S=V', S > Finl(e), S == inl(e’), S’

She S==¢,§S

o Elnr
;

Y~ Finr(e), S == inr(e’), S’

w; X’
ke S==¢e" 8

5 ECase
Y F case e of |inl (x) = e’ |inr(y) = e”, S == case e’/ of |inl (x) = &' |inr (y) = e”, S’
— ECasel
¥ F case inl(v) of |inl (x) = e’ |inr (y) = e”, S = [v/x]e’, S
5 ECaser
Y F case inr(v) of |inl (x) = e’ |inr (y) = e”, S = [v/x]e”, S
She S&sel S 1 ¢ dom(S)
— ENew oI ENewBeta
5 F new(e, 1), S == new(e’, 1), S’ Tk new(v, 1), S === 1, SU{l — (v, 1)}
ZF@,SL—L;Q/,S/ (1>—>(V T))ES
7 EDeref ’ — EDerefBeta
T hle, S==1¢ S’ SHILS==wv,S
The Sl et S She Sl el s
— Eassignl — Eassignr
Thew=e/,S==¢":=¢ S FThli=e, S=—=1l:=¢', S

L € dom(S) type(S,1) =7
SEl=v, S =2 (), S (v, 1)]

Eassign

open(o);X Eopen

> F open 0 in e, S =—————=> e then unopen 0, S

w;X’

Y U{o}kFe S==¢', S

— Eopened
S F e then unopen 0, S === e’ then unopen o, S’

nopen(o)iE EopenedBeta
o)
2~ v then unopen 0, S —=—=v, S

Eclose
close(o);=

2~ | close 0 in e, S =——= e then unclose 0, S



No}Fe, S = e/, S
Eclosed

w; X’
¥ I e then unclose 0, S == e’ then unclose o, S’

nclose(o] EclosedBeta
u 7); 2
2 F v then unclose 0, S —_— v, S
w;x’ " ’
o€ x Fe, S=——¢€",S
EWhenOpen

w;x’
Y I when o then e else ', S === when o then e” else e’, S’

ogT  The, Sl

o EWhenClosed
> I when o then e else ', S === when o then e else e”, S’
o€
— EWhenOpenBeta
> Fwhen 0 thenvelsee’, S=v, S
o¢
— EWhenClosedBeta
5 I when o then e else v, S == v, S
3.2 Typing
3.2.1 Subtyping
Subtyping defined as in [5].
pCyp’ A<:B . Top < T Ty < T
; sub-policy — sub-ref 0 ! & ’ sub-prod
AP <: BP ref T <:ref T Ty X To <: Ty X T3

To <! T1 Ty <! T3 p/ C P s Cy

To <! T1 To <! T3 = _
sub-sum TP Sp sub-arrow
To+ T <t +T T Ty < Ty —— Ty
——  sub-unit sub-nat
unit <: unit N< N

We use state environments 0,07, 0y etc. to keep track of the heap. They are partial functions from heap
locations to (annotated) types.

3.2.2 Typing

The typing judgements have the form T';2;0 pc e : T which means that in environment I' e has policy
annotated type T if at least the locks in X are open and locations have the types specified by 0. In this case
the policy pc is an upper bound on the write effect of e.

NOTE:In the paper we do not have the subtyping premises in the case rule. The rule presented here
can be derived from the rule in the paper using the subtyping rules and vice versa. All the proofs use the
version presented here.

neN MZU{ohObkpce:t pc C pol(o)

nat
F,x:T,F’;Z;Sl—pr:Tvar 250 Fpe ot N* M50 kpcopenoine:t open

r,X:Tl;Z/;e "pc’ €Ty

Mru{oh0bkpce:t pc C pol(o) A
opened =/, pc’ n
I"; 250 Fpc e then unopen 0 : T 250 Fpc Ax.e: (1] —— T2)
520 Fpc e : (ref )P pCT T<:1 I2;0 Fpcer iy 250 Fpc eg 1o
7 deref T prod
M2 0kpcle:t 250 Fpc (e, e2) : (11 x 12)



Z/, c’/
I 250 Fpcer: (Ty LN T9)P

T250 Fpc ea T} PC T pclLp C pc’ T < rD5

a
F; Z; 0 "pc €1 €2 : Ty PP

250 pc e (1) x 12)P pCT I 250 pce: (11 x1)P PC T
r, Z, 0 l_pc fst (e) T r, Z, 0 l_pc snd (e) . To

snd

F;Z;ekpce:’rl inl F;Z;GcheiTg
[ 250 Fpeinl(€) : (11 + 1) T3 530 bpc inr () £ (T1 +72) "

inr

F,Z,e }_pce:(Tl +T2)p
pCr Fox:T]; 2550 Fpeup €101 Ty :th; 50 bpap €211 T <o) Ty <: T

case
250 Fpc case e of |inl (x) = ey |inr(y) = ex: 7T

M2 0kpce:t pcC T T(5) <7 o) =1
new loc

I 230 Fpc new (e, T) @ (ref T) - 250 Fpe L (ref T)F

M50 bpe e:t’ pc C pc’ < b M o\{oh 0 Fpce:t pc C pol(o)
I 0kpce:t e I'; 250 bpc e then unclose 0: T

closed

7250 bpc e (ref /)P () <t M50 kpce T pclp C 1
5550 Fpc e:=e’ :unit™

assign

. MN[0 0tpce:t pc C pol(o)
unit

1
250 Fpe () : unitt I'2;0 Fpcclose oine: T close

r7 I U {6}7 0 FpC\_lp()l(o’) €1 :T ra Z; 0 chul)()l(ﬁj €T 1)01(6) Lt

when

;250 Fpc when o then ey else ex : T

4 Properties of the policy ordering

Note that in this section we are using the full paralocks policy language including actor quantification and
parameterised locks.

Lemma 4.1. The ordering C on policies is reflexive and transitive.

Proof.

reflexivity: Let p be a policy and ¢ € p. Then also ¢ € p and ¢ T ¢ because the ordering C in clauses is
reflexive by definition.

transitivity: Let po,p1,p2 be policies such that po C p; and p; C p2. We have to show py C po.
Let ¢y € p2. By assumption there is a ¢; € p; such that ¢; C co. By assumption there is also a cg € pg
such that cg C c¢;. By definition of the ordering C on clauses C is transitive. Hence ¢y C co. Hence there
is a clause c in pg, namely cg, such that ¢ C cs. O

Lemma 4.2. VA, p,p/ AP <t AP < p/ L p.

Proof.
—: Let AP’ <: AP. This must have been derived using sub-policy. Hence p’' Cp.

+: Let p’ < p. We have A <: A by|Lemma 5.1} So

p'Cp A<A
AP < AP

sub-policy

Lemma 4.3. Vp,2, 2.2 DX — p(Z/) Cp(2).



Proof. Let p be a policy and Z, L’ lock-sets such that £’ O X. We want to show p(X’) C p(X). Since by
definition p(X') = U {c-Z'} and p(X) = U {c- I} it suffices to show
cep cep

c-X'Cc-X

for all clauses c.

Let ¢ be a clause. This means c is of the form ¥x.A = b. Then c - £ only contains clauses of the form
V;.AQ(G) = b(0), were A, is a lockset such that there is a lockset Ay such that A = A; UA, and there is a
2 C ¥ such that A; matches X" with 0.

Let VY.AQ(B) = b(0) € c- L and let Z” , Ay be such that they fulfil the condition above. In that case
2" C X' because L’ D X and still A = A; UAy and A; matches X" with 0. Hence V?.Ag(e) =b(0)ecc-L'
This suffices to show ¢ - X’ C ¢ - £ because for all clauses ¢ we have ¢ C c. O

Lemma 4.4. For all policies p we have p(()) = p.

Proof. First we show that for any clause ¢ we have ¢ - ) = c. By definition of clauses ¢ has the form
VX.A = b. In this case ¢ - ) = {VX.A2(0) = b(0)|A =A; UA; AL C 0 A Ay matches £, with 0}.

Every subset of the empty set is the empty set, so the set simplifies to
{VX.A5(0) = b(0)|A = A; U Ay A Ay matches () with 0}

For a set A; to match @ with a substitution 6 among other things A;(0) = @ must be true. This is
only the case if A; = 0. On the other hand we also need 0 to be defined on exactly the free variables
of A;. When A; = () this is only the case of 0 is the empty substitution. Hence the set simplifies to

Since for any set Ay we have ) U Ay = A, this simplifies to {VX.Ay = b|A = Ay}. Using the equality we
get {VX.A = b} which is exactly c.

Now we show the main goal: p(@) = (J (c-0) = U (¢) =p. O

cep cep
Corollary 4.5. VX. p(Z) C p.

Proof. Let ¥ be a set of locks. By it suffices to show p(Z) C p(#). Since § C T we have
p(X) C p(0) by [Lemma 4.3 0

Lemma 4.6. For all policies p, q, the policy p LI q is an upper bound on p and q, respectively. And pI1q
is the greatest lower bound on p and q.

Proof. M: Let p, q be paralocks policies. We show
eprigEpandpriqEq
e Vr:rCpATCq—=>rLCplq.

prq=pU(q. Hence forall c € p also c € pUq =p Tl q. Similarly forallc € qalsocepuUq=pnq.
Hence pMqC p and pMqLC q as for all clauses ¢ we have ¢ C c.

Let r such that rC pArC q. Let ce pUq=prMq. Thenc € porceq Wlog. assumec € p.
Then because T C p there is a clause ¢’ € 1, such that ¢/ C c¢. Hence r C pq.

U: Let p, q be paralocks policies. We show
epUqdpandplqdq
Let ¢ € pU q. There are four possibilities:

1. ¢ = Y%, Yp,Yq.Lp ULq = X, where Vx,yp.Lp, = x € p and Vx,yq.24 = x € q and Y, and yy are
disjoint sets of actor variables.

2. ¢ =YWp,Yq-Lp ULg = a, where Vy,.L, = a € p and Vijq.Zq = a € q and Y}, and yq are disjoint
sets of actor variables and a is free.

3. ¢ =Yp,Yq.LZp ULglx := a] = x, where Vij,.Z, = a € p and Vx,yq.Zq = x € q and y;, and yg are
disjoint sets of actor variables and a is free.

4. ¢ =Wp,Yg.Lq ULplx = a] = x, where Vy3.Zq = a € q and Vx, Y.L, = x € p and Y and yg are
disjoint sets of actor variables and a is free.
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We will look at all of these cases separately.

1. V%, Up,Ygq-Lp = X E VX, Yp,Yq-Lp ULq = x = ¢ because I, C L, UZ4. Because the variables from
Yg do not appear in L,, we also have ¥x,y,.L, = x E Vx,yp,Ygq.Zp = x. Hence by transitivity
VX, Yp-Lp = x C c. With the corresponing argument we get Vx,yg.2q = x C c.

2. Yp,Ygq.Lp = a C Vb, Yg.Zp ULy = a = ¢ because L, C I, UZ,. Because the variables from
Yg do not appear in X,, we also have Vj,.L, = a C Yyp,Yq.Zp = a. Hence by transitivity
Yyp.Lp = a E c. With the corresponing argument we get Vyq.2q = a C c.

3. We get Vy,.Z, = a L c as in the previous case.

We know Vx,ygq.Zq = x C Vyg.Zqlx := a] = a. We also know Yy Zq[x :=a]l = a C Yy, ygq.Iqlx =
al = a because the variables of 4, do not appear in Z4[x := a]. Additionally Yy, yg.2q[x := a] =
a L Yp,Yg.LpULglx :=a] = a = c because Lq[x :=a] € Z,ULq[x:= al. We get Vx,j5.Lq =>xEcC
by transitivity of C.

4. Symmetric to the previous case.
O
Lemma 4.7. Whenever ¢ C ¢’ and ¢ =VX.Z = a where a ¢ X and ¢/’ =V§.2' = b, then a=b and b ¢ §.

Proof. By induction on the derivation of ¢ C* ¢’.
Let ¢ C ¢’. Then ¢ C* ¢’. We do induction in the derivation of ¢ C* ¢’.

refl-*: In this case ¢ = ¢’ and therefore trivially a = b.

trans-*: In this case there is a y such that ¢ C y and y C* ¢/. We show that for y =VzZ.Z"” = d, a = d by
case distinction.

refl: In this case clearly a = d, as renaming of bound variables in ¢ does not change the free variable
a. As no new bindings appear a = d is free in y as well.

— a = d because otherwise the rule is not applicable. d is free because the quantifiers are the same
in c and y.

— Because a is free in ¢ the substitution of ay does not change a. d is not bound as no new
quantifiers appear in y.

By induction we now get b = d. By transitivity a = b.

O
Lemma 4.8. Let § =yo, ..., Yn and X be vectors of actor variables such that §NxX = ) and X be a lock-set
such that all the free variables of L are disjoint from the variables in §j. Then cjy = Vyp,xp.Z U Z[xg =
Yo, X1 ‘= Y1,--,Xn = Ynl = a EVREI = a = ¢, if a € X and ¢] = Vx,yp,Xp.Z U Z[xg = yo,x1 =
Yis-sXn = Yn] S x CVRE = x=c1.

Proof. By induction on n.

Ifn=0,thencop=Z=aandc)=XUX=a=2X= a Asco=cgclearly ¢) C co. c1 = Vx.Z = x
and ¢ =Vx.ZUZ = x=Wx.Z = x. As ¢y =c] clearly ¢] C c;.

Case n+1: Then ¢ =Yyo,Y1,...,Yn, X.ZUXZ[X0 :==Yo0,X1 :=Y1,---,Xn ‘=Ynl = a T VYy,...,yn,X.ZU

(Z[x0 = Y0, X1 :=Y1,---,%Xn :=Ynl = a)lyo :=x0] = VY1,.--,Yn,X.ZU Z[X1 :=Y1,...,Xn := Yn] = a as
a # Yo and the free variables of sigma are disjoint from yg.

By induction Yy1,...,Yn, X.ZUL[X] :=Y1,...,Xn :=Ynl = a C VX.Z = a = ¢p. The case for c] and ¢;
works analogously. O

Definition 4.1. For two clauses ¢, c’, we define ¢ Lic’ as the single element of {c} LI {c’} if such an element
exists. If it does not exist ¢ Ll ¢’ is undefined.

Lemma 4.9 (Monotonicity). U is monotone with regard to the ordering C on both clauses and policies.
That is for all clauses cg, ¢y, ¢ with cg C ¢1 we have coUc C ¢y Uc if ¢; U c exists and for all polcies p, q,
withp C v we have pUTC qUT.

I is monotone with regard to the ordering C on policies, i.e. ¥p,q.pC q— VrpMrC qMr.
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Proof. We first show this for the ordering C on clauses. That is we show for all cg, cy,c with ¢g T ¢; that
colc C ¢y Ucif ¢q Uc exists.

We do case analysis on ¢g C c;.
refl: In this case cg = c1 up to deletion of unused quantifiers, a-renaming and reordering of quantifiers. In
particular this means that when c; U ¢ exists that co LI c also exists and that these two clauses can be made
to be equal by the same deletion of unused quantifiers, o-renaming and reordering of quantifiers. Hence
coldcCcpUec.
subset: In this case cg has the form VX.Xy = b and c¢; has the form VX.Z; = b and £y C £;. We do case
analysis on the form of ¢

e c=V¢.Z=Db. ThencoglUc=VX,Xe.ZgUZ =Dband ¢y Uc=VX,X¢.21 UX = b. Because £y C X,
also o UX C X; UX. Hence by subset colicC cq Lc.

ec=Vx,Xxe.Z =>xand b¢ X. Then coUc=VX,Xe.LoUZ[x:=b]=band c; Uc =VX,X¢.Z1 UL[x:=
b] = b. Because Xy C X also Yo U Z[x:=b] C £; U X[x :=b]. Hence by subset cqllc C ¢y Lc.

ec=Vx¢.Z=dand d ¢ xz and X = b,x". Then ¢glLc = Vx',%e.Zolb :=d] UL = d and ¢; Uc =
Vx/, Xe.Z1[b:=d]UZ = d. Because Zg C X; also Zo[b:=d]UZX C X;[b:= d]UZ. Hence by subset
coldcCciUec.

e The case where ¢ = Vx¢.X = d with d € X¢, d #b and b ¢ X cannot happen because ¢, LI ¢ exists.
subst: co =Vx,X.L = b and ¢; = VX.(X£ = b)[x := a]. We do some further case analysis
eb#*xandb ¢X.

—c = W¢.Ze = d with d € x¢. In this case d = b because c¢q Ll ¢ exists. Then ¢o LUc =
Vx, X, Xe. LUZ. = band ¢c; Uec =X, Xe.L[x ;= alUX. = b =VX,X¢.(ZUZL. = b)[x:= a]. Hence
coUc C ¢y Uc by subst.

>

—c=VWx,%.Zc = x. Then colc = Vx,X,x¢.ZUZc[x :=b] = b and ¢; Uc = VX, x¢.Z[x =
aUZx:=b]=b=VX,x¢.(ZUZ:.[x:=b] = b)[x:=a]. Hence coUc C c; Uc by subst.

e b=x. Then ¢cg =Vx,X.Z = x and ¢; = VX.X[x:= a] = a.

— ¢ = VX¢.X = d. By assumption ¢ Lc exists. Hence d = a. Then colic = VX, x¢.Llx := a]UX, =
a=cy Uc. Hence coUc C ¢y Lc by refl.

—c=VYx,%X¢.Ze = x. Then coUec =Vx, X, Xe.LUZ, = xand coUc =VX,xp = Zlx = al UL [x =
al = a=VX,%,.(ZUXZ. = x)[x = al. Hence co Lc C ¢; Lc by subst.

We continue with the proof for C=C*. To show: Vcg,c1,¢c.co C ¢y — Ic’.c’=cilUe—coldc Tey Uec.
Let cg,cq1,c be clauses and cq J c;.

Assume that ¢ U ¢ exists. We proceed by induction on ¢ C cy.
refi-*: In this case co = ¢;. Hence ¢y LI c = ¢ LI ¢ and consequently also cg LI ¢ C ¢1 LI ¢ by reflexivity.
trans-*: We have some cg, s.t. c¢g C ¢2 and ¢y C ¢1. By induction cs Ll ¢ exists and ¢co Lic E ¢ Lic. By the
previous proof cg LI ¢y also exists and ¢y LI c C co LI c. We get the goal by transitivity.

Monotonicity for policies remains to be shown. Let p, q,r be policies such that p C q. Let c € qU 7.
This means that there must be clauses ¢q € q and ¢, € r such that ¢q Uc, = c. In particular ¢q U ¢,
exists. Because cq € g and p C ¢ there is a clause ¢, € p, such that ¢, C cq. By monotonicity for clauses
which we have shown above ¢, U ¢, exists and ¢}, U ¢ E cq U c,. Because ¢, € p and ¢, € T we know that
cp Lcr € pUT. Hence there exists a clause ¢’ € p U such that ¢’ C c. Consequently pUr T qUT.

Finally we prove monotonicity for M. Let p,q be policies and p © q. Let r be a policy and let
ceqnr=quUr. Thence qorcer. Ifc e q, then thereisac’ €p,s. t. ¢/ C c. Since ¢’ € p, also
c/epUr=pnr. Ifcer, thenalsoc epUr=pnrand c C c by reflexivity. O

Lemma 4.10. C together with U and M forms a lattice on paralocks policies.

Proof. It is clear that the meet prq = p U q of to policies p, q is associative, commutative and idempotent.
The join p LI q of two paralocks policies p, q is also clearly commutative.

Idempotence: We have to show p CpUp(l) and pUp Cp (2).
(1) As shown in U is an upper bound.
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(2) Let ¢ € p. c has the form Vx},.L, = a, where a is either a bound or a free actor variable and
Xp = Xo,...,Xn is vector of bound actor variables. Because ¢ € p, there is a Yy, = Yo, ...yn such that x;,
and Y, are disjoint and either X, Z a & 4, or xg = a = yp and ¢ = Vyp,, Xp.ZpUL, X0 := Yo, .. . Xn = Yol =
a € pUp in the first case and ¢j :=Va,y1,...,Yn,X1,..., Xn-Zp ULp[X1 :==Y1,...Xn :=Yol = a€pUpin
the second case. By [Lemma 4.8|¢; C ¢ and hence p Lip C p.

Associativity: We are using the same side conditions as in the definition of L. We show for policies
P, q, T that
pU(qUT)=(pUq)Ur={L,ULqUL = x|, =xepANLi=>xcqN\L = xecT}U
(LoULqUL=allp=acpANiy=acqAL, = acTU
{(LruiguLix=adl=allp=acpAig=>acqgN\L = xecTU
{(Lougx=dUL = ally =>acpALg=xEqNL, = acT}U
{Lpxi=adlULqUL, = ally, = xepNig=acqNL, = acTjU
Loxk=duUlgkx=adUL = all, =xecpAig=>x€eqNL, = acT}U
Lox=dUZquiix=a=all, =xcpALij=>acqNL = xecT}U
Lrulgx=dULi/x=ad=ally =acpAlg=>xecqNL, = xecT}

We call the long set on the right hand side of the equation | |p, q,T.

pU(qur)Cl]p,q,r Letcepl(qUr).

ec=2,UXq; = xwhere L, == x € pand L4, = x € qUT. In this case L4, must have the form
TqUL withZg=x€eqand L, =xer. Hence L, ULy, =X, UL UL, € ]p,q,T.

ec=2,UXqr=awhere X, =acpandXy,= ac qUr. Thereare 3 further cases:

—XLgr=LqULiwithly=aecqand L, = aecr Hence L,ULq, =L, ULy UL, €|]p,q,T.
—Lgr=LqUL[x=a withZs=aecqand L, =xecr Hence Z,ULq, =L, ULqUZL [x:=
aellp.q,r
— Igr =Lglx:=ad UL withZy = xeqand L, = aer. Hence L,UZLy, =L, UZLglx =
aduz,el]p,q,r.
ec=2,Ulj,[x=al = awhereX, = acpandZy,=x€cqUr. In thiscase Ly, must have the
form Ly UL, with Ly =x € qand L, = x €r. Hence L, ULy [x:=a] =L, ULg[x :=al UL [x =
aelp,q,m

ec=X,[x:=alUXy,=awhere L, = xepand Ly, = aec quUr. There are 3 further cases:
— Lgr=XqUL,withly = aeqand XL, = aer. HenceL,[x:=alULly,=ZL,[x:=aUlqUL, €
I_lp’q7r'

—Xgr=LqUZLx=d with g = aeqand L, = x € r. Hence L,[x :=alUZq, = Lplx =
aUgUZLix:=dae€l]p,q,r.

— Igr=Lglx=aUZ with 2y = x € qand L; = a € 1. Hence L,[x :=alUZq, = Lylx =
aulgk:=adU,el]p,q,r

Lp,¢,r SpU(gUr): Let cel]p,q,r.

ec=,UrqUL = xwhereZ, =x€p,g=x€qand L, =x€71. Then LUL, = xecqUr
and hence L, U (ZqUZL)=>xcpU(quUT).

c=,ULqUL = awherel, =acp, fy=acqandi, = acr. ThenlqyUZL = acqlUr
and hence L, U (ZqUZL,)=acpU(quUr).

ec=r,ULqUL[x:=a =>awherel, =a€cp, Ly=>acqand L, = x 1. Then Ly UZL[x =
al] > aeqUrand hence L, U (LqUZ[x:=a])=acpU(qUr).

ec=2,Ulqyx=alUL, = awhere L, = ae€p, Ly =>x € qand L, = a € . Then Z4x =
al]UL, = aeqUrandhence L, U (Z4lx:=alUL)=acpU(quUr).

e c=X,[x=alULqUL, = awhereZ, = x€p,Ly=acqandi, = aecr. ThenZ UL, = ac quUr
and hence Z,[x :=aU(ZqUZ) = acpU(quUr).

ec=rx=adUlgylx:=ad UL = awhere L, = xcp, Ly =>x e qand L, = a € 1. Then
Iglx:=alUZ, = aequUrand hence Ly[x :=alU(Zglx=aUL)=acpU(quUr).
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=L,x=adUZjUL[x=a = awhere L, = x€p, Ly = ac qand L, = x € 7. Then
rx:=al=aequUrandhence L[x :=alU(ZqUL[x:=a]l)=acpU(quUr).

)N
ec=X,UXylx:=aUZXx:=a = awhere L, = a€p, Ly = x € qand L, = x € . Then
TqUL, =>xeqUrand hence Z, U (ZqUL )x:=ad =>a=L,U(I4x:=aUZL[x:=a]) = ac
puU(qur).

The proofs of the inclusions involving (p U q) U r work analogously.
Absorbtion:

pU(pMq) C p: Let c € p. Then ¢ € p and because pMq=pUq, also ¢ € prq. The rest of the proof is identical to
part of the proof for idempotence.

p C pU(pNgq): This is true by
pM(pUgq) C p: This is true by
pCpM(pUgq): LetcepN(plq)=pUpUq. We make a case distinction:
e cep. ThenalsocepandcCec.
e c € plq. By[Lemma 4.6)p C p LI q. Hence there is a ¢’ € p such that ¢’ C c.

Congruence: We have to show that ~ is a congruence relation with regard to L and M.
Cemma 4.9 commutativity LCemma 4.9 commutativity
Let p ~p’and q = q’. Then plUq C p’Uq C qup’ C q’'Up’ C
commutativity [Cemma 4.0 commutativity

p’Uq’. Similarly p’Lq’ [ puq’ C q’'Up [ qup C plUg. Hence
puUq~p’'uq’.
Corresponding reasoning works for M. O

Corollary 4.11. For all policies p,q with p C q we have pLU q ~ q

Proof. Let p, q be policies with p C q. Then by pUq C qU g by [Lemma 4.9|and q U q C q by idempotence
[T} We have q Cp L1 q by Lo 4 0

Corollary 4.12. For policies p, q the policy p U q is the least upper bound of p and q.

Proof. p U q is an upper bound of p and q by
Let r be an upper bound of p and ¢, i.e. p C rand q C r. Then pLiq C rUq by Cemma 4.9 By
Corollary 4.11) r U q ~ r. Hence p U q C r by transitivity (4.1]). O

Lemma 4.13. Vp,q,r:pUqCr<pLCrAqLC.

Proof. Let p, q and r be policies.
—: By definition of least upper bound p C p U q and q C p U q. Hence by transitivity of C (4.1) pC r

and qC .
<: Because p C r and q C r, T is clearly an upper bound of p and . Because p Ul q is the least upper
bound of p and q, we must have pLUq C 7. O

Lemma 4.14. If ¢c; C co, thency - X Cco - X,
Proof. By case analysis on ¢; C ca.
e refl: In this case the same deletions, reorderings and renamings make ¢; - £ and co - £ equal.
e subset: In this case c; =VX.X; = b and co =VX.Zy = b and £; C X,. Let VX.Z5(0) = b(0) € co- L.
Then there are ) and X’ such that X’ C £, X% matches X’ with 0 and L, =X, U ZJ.
Let X = Z;\X4. Then VX.2{(0) = b(0) € ¢1 - Z. Because X; C Iy and I = X;\Z and Z) D L,\2Y
we have ] C ZJ and hence VX.Z{(0) = b(0) C VX.X,(0) = b(0). This shows the claim.

e subst: In this case ¢ = VXxg,X1,...Xn.Zc = a and ¢; = Vxq,...Xn.Zclxg := b] = alxg := b]. Let
VX1, ... Xn.25(0) = alxp := b](0) € co - X. Then there are X and X’ such that £’ C X, 7 matches
Y’ with 0 and X.[xo :=b] = L, U Xy. In this case there are X/ and X! such that L. =X, UL/ and
both X/[xo:=b] = I} and X[xg :=b] = XJ.

There are two possibilities:
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p(Z)(Z)

— X[xp:=b] = L. In this case X/ matches X’ with 0. Hence Vxq, X1,...,%xn.2.(0) =
We know that xo(0) = x¢ because x¢ is not bound in X! By subst on,xl, cey
a(®) C ¥xq,...xn.(Z.(0) = a(B))lxo := b(0)] = ¥x1,...,xn.Z.(0)[xo := b(0)] =
b(0)] =Vx1,...,xn.Lllxo :=b](0) = a[xg :=bl(0) = Vxq,...%xn. Z 4(0) = a[xp :==bl(6

— Z/[xo :=b] # X! In this case x¢ is bound in X. There are again two cases:

a(@) € cy-L.
nZé(e) =
a(8)xe =
)

% b is one of x;...xn Say b = x4. Because xq is bound in X! and Z[[xq := b]Z) we know
that x; is bound in XJ. Because L) matches £’ with 8 we know that x; € dom(8) and 6(x;)
is a free actor variable. Hence X! matches L’ with (0(xi)/xo,0) because L”(0(xi)/x0,0) =

2 (0(xi)/x0)(0) = L5 [xo := xiJ (xi/6(x))(8) = L3 [xo := b](6) Hence VX07X1, X ZE((0(xi) /%0),

a((0(xi)/x0),0) € c1 - L. By the same argument as above X/ ((0(xi)/x0),0) = Z.[xo := b](0)
and a((0(xi)/x0),0) = alxg := bl(0). Consequently ¥xg,x1,...,xn.2L((0(xi)/%0),0) =
a((0(xi)/x0),0) = ¥x0,X1,...,Xn.2L[xo := b](0) = alxg := bl(0) T Vx1,...,xn.Z.[xo =
bl(8) = alxo :=bl(8) =Vxq,...,xn.Z5(0) = alxo := b](0)

x b is a free actor variable. In this case (b/xg,0) is a substitution substituting free actor
variables for bound variables and X/ matches X’ with (b/x0,0) because L/(b/x0,0) =
2(b/x0)(0) = Zi[x¢ := bl(0). By the same argument as above X.((b/xg),0) = Lllx¢ :=

bl(0) and a((b/x0), 0) = alxg := b](0) Consequently Vxg, X1, ..., xn-Z.((b/x0),0) = a((b/x0),

VX0, X1, - -« Xn-Zalxo := bl(0) = alxg = b](0) T Vx1,...,xn.Z.[xo := bl(0) = alxy =
bl(0) = Vx1,...,%xn.25(0) = alxq := b](0).

O

Lemma 4.15. If p C q, then p(Z) C q(X)
Proof. By induction on the derivation of p C* q.
o refl-*: In this case p = q. Hence also p(X) = q(Z). We get the claim by refl-*.

e trans-* In this case by inversion there is an r such that p C v and r C *q. We have p(X) C r(X) by

Lemma 4.14/ and r(X) C q(X) by induction. We get p(Z£) C q(Z) by transitivity (4.1]).
O

Lemma 4.16. Vp,Z.p(X) = p(Z)(X)
Proof.

C p(X): We have this by [Corollary 4.5

P(X) Cp(X)(X): Let VX.A3(0) = a(B) € p(X)(X). Then there is a £’ C X and a A4 such that A3 UA, = A’ and Ay

matches L’ with 0 and VX.A’ = a € p(Z). This means in turn that there are A, A1, A2,0’, " a’ such
that A’ = A1(07), A=A UAs,a=a’(0’),L” C £ and Ay matches Z” with 6’ and VX.A = a’ € p.
Hence Az U Ay = A1(0’). Therefore A, = {x|x(0’) € Az} and A} = {x|x(0’) € A4} are sets such that
Ay = AL UA; and A}(0') = Az and A§(0’) = Ay. Hence A = A UAL U As.

We show Ay U A} matches X' UL"” C © with (07,0).

We have to show that the set of bound actors in Ay UA] is equal to dom(0’,0) = dom(6’) U dom(8).
We know Ay matches & with 6/. Hence dom(0’) is equal to the set of bound actors in A,. We also
know A}(0’) matches X’ with 6. Hence dom(0) is equal to the set of bound actors in A}(8’). The set
of bound actors in A}(0’) is equal to the set of bound actors in A} without dom(0’). Hence the set

of bound actors in A} is a subset of dom(8’) U dom(6).
We also have to show that (As UA;)(07,0) =X UX”.

(A UA})(07,0) = Ag(theta’,0) UAL(0,0) = (A5(67))(0) U(AL(07))(6) = £”(8) UA4(0) = £7/(0) UL,
Because Ay matches L with 0’ all the bound actor variables in A are in the domain of 8’. Hence
2" = Ay(0’) does not contain any bound actor variables anymore and X”(0) = X”. Hence indeed
(A UAL)(0,0) =2/ UL,

Because A = A U A} U Ay and Ay U A) matches £/ UX” C T with (0,0), we get VX.AL(0,0) =
a’(e’,0) € p(X). Using the equalities above this is simplifies as follows: VX.A4(87,0) = a’(0’,0) €
p(X) =Vx.(A5(07))(6) = (a’(6'))(0) € p(X) = VX.A3(0) = a(0) € p(X).

Hence VX.A3(0) = a(0) € p(X) € p(X). We get the goal with refl-*.
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Corollary 4.17. If p(X) C q, then p(X) C q(X).

Proof. By p(E)(X) C q(X). By p(X) C p(X)(X). Hence by transitivity
p(Z) C q(%). O

Corollary 4.18. If T <: T/, then T(Z) <: T’.

Proof. Let T = AP and T/ = A’9 be types such taht T <: t/. This must have been derived using sub-
policy. Hence A <: A’ and p C q. By p(X) C p. By transitivity p(X) C q. Hence by sub-policy
AP(E) < A'd, O

Lemma 4.19 (Least and greatest policies). | = Vx.x is the least policy and T = {) is the greatest policy.

Proof. Let p be a policy. We show p C T. Let ¢ € T. Since T = () this is a contradiction. Now we show
L Cp. Let ¢ € p. Then c has the form VX.X = b. There are two cases:

e b=x. Then L = V¥x.x = VX.x = VX.0) = x. Since § C X we have VX.0) = x C VX.Z = x. We get the
claim by transitivity.

e b is a free actor variable. In this case L = Vx.x C b =~ VX.b = VX.0) = b C VX.X = b for the same
reasons as above.

O
5 Weakening
Lemma 5.1 (Subtyping reflexive).
1. VA. A <A
2. V.1 <t
Proof. Almost identical to the proof in [5]. By mutual induction on the structure of the types.
AP <: AP: By induction A <: A and p C p by the definition of C. The claim follows by sub-policy.
unit <: unit: By sub-unit.
N <:N: By sub-nat.
ref T <: ref T: By sub-tau.
Tx 1/ <:1x 1": By induction T <: T and t/ <: t’/. The claim follows by sub-prod.
T+ 1’ <:t+ 1" By induction T <: T and T/ <: t’. The claim follows by sub-sum.
R By induction T <: T and T/ <: /. We also have £ C X and p C p. The claim follows by sub-arrow.
O

Note that due to the standard terminology for logical relations we also call state environments worlds.
We need a notion of a larger state, that could exist at some point later in an execution. As we will mainly
need this in the logical relation later on, we call this world exrtension. But the same notion is useful for
some syntactic proofs as well, which is why we already define it here.

Definition 5.1 (World extension[5]). We say a world 8’ extends a world 6 written 6 C 0’ (or 6/ J 0) if
V1l e dom(6). 1€ dom(6’) AB(1) =0'(1).

Lemma 5.2 (Weakening). If I'; 2,0 Fpc e : 7, then for all Y D T, 2/ D ¥, and 8’ J 0 we have I'; 20’ Fpc
e:T.
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Proof. By induction on the derivation. For the rules var, nat and unit the new judgements can be derived
using the same rule. In most other rules we just replace the judgements in the premisses by the judgements
we get from the induction hypothesis. Subtyping assumptions are usually not affected by the change. The
same is mostly true for the orderings on policies.

In the case of app we also have to show, £’ D L”, when e; has the type T; =P Ty9. We have this
because the premiss of the rule is £ D X” and X’ D X.

For new we also have to show t/(ZX’) <: 1. We already know t/(X) <: 7. T and T’ have the form AP and
B9, respectively By inversion we get A <: B and q(X) C p. By sub-policy it suffices to show q(ZX’) C p.
We have q(X’ by m q(Z’) E p follows by transitivity (4.1] .

For as51gn T(Z ) <: 1t/ follows with the same argument as above.

In loc we have to show 0/(1) = 1. We already know 6(1) = t. This follows directly from the definition
of 8/ 3 6.

O

6 Type Safety

Lemma 6.1 (Subtyping transitive). If Ty <: T, and 7y <: Ty, then 1) <: 15 and if Ay <: A; and Ay <: Ao,
then A(V) < A_)

Proof. We are going to prove this by induction on the derivation of Tg <: T; and Ay <: A; respectively.
To make the contravariant case in sub-arrow go through we will actually prove the following: If Ty <: 11,
then VTs.(To <: Tp — To <: T1) A\ (T1 <: T = Tg <: T2) and similarly for the unlabelled types.

e sub-policy. In this case 19 = Ao , T = A‘fl with po C p; and Ag <: A;. There are two cases:

— T1 <: To We find that the only rule with which this would be derivable is sub-policy and hence
Ty = Ab?, p1 C po and Ay <: Ay. We show Af° <: AD? with subpolicy. This means we have to
show

* Ag <: Ag. We have this by induction.
* po C pa. We get this by transitivity of C (4.1)).

— Ty <: Tg- We find that the only rule with which this would be derivable is sub-policy and hence
Ty = AB?, pa C pg and Ag <: Ag. We show AB? <: AP* with subpolicy. This means we have to
show

* Ag <: Aj. We have this by induction.
* p2 C p1. We get this by transitivity of C (4.1)).

e sub-ref: In this case Ay = ref T}, A; = ref T{. By inversion on A; <: Ay and Ay <: Ay, respectively,
we find that the only rule with which this would be derivable is sub-ref and hence Ay = ref t}. We
get ref 1) <: ref v and ref t) <: ref T}, respectively, with sub-ref.

e sub-prod: In this case Ag =T} x 1), A1 =11 X 77 with t) <: 7] and t{ <: 1/,

There are two cases:
— Aj <: Ay: By inversion we find that the only rule with which this would be derivable is sub-prod

and hence Ay = T4 x T/, T <: T2 and 17 <: 74. By induction we have t{ <: 75 and T} <: 4.
We get the claim with sub-prod.

— Ay <t Ap: By inversion we find that the only rule with which this would be derivable is sub-prod
and hence Ay = 4 x 1/, T4 <: 19 and 4 <: 1. By induction we have t) <: 71 and 4 <: 17.
We get the claim with sub-prod.

e sub-sum: In this case Ag = 1) + 17, A1 = 1] + 77 with 15 <: 1] and 1§ <: 77"
There are two cases:
— Aj <: Ag: By inversion we find that the only rule with which this would be derivable is sub-sum

and hence Ay = T4 4+ 17, T{ <: T2 and 7y <: 4. By induction we have T} <: 14 and T} <: 1§
We get the claim with sub-sum.

— Ay <t Ag: By inversion we find that the only rule with which this would be derivable is sub-sum
and hence Ay = T4 + 17, T4 <: To and 74 <: 7. By induction we have 4 <: 11 and 1§ <: /.
We get the claim with sub-sum.
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. Zo, I,
e sub-arrow: In this case Ag = 1) 2° 1t/ and Ay =] "2 1/ such that v} <: ), v </, p1 C po
and ZO - Zl-

There are two cases:

— A1 < Ag: By inversion we find that the only rule with which this would be derivable is sub-
arrow and hence Ay = T/ Fopa Ty <1y, Ty <14, p2 Cpp and Xy C Xo.
We show T, Fopo T < T Fape T4 using sub-arrow. This means we have to show:
* T4 <: 1) which we get by induction.
x 1y <: 74 which we get by induction.
* p2 C po. We get this by transitivity of C .
x Yo C Xo. We get this by transitivity of C.
— As <: Ap: By inversion we find that the only rule with which this would be derivable is sub-
arrow and hence Ay = T) Fopa T, T < T4, T < 1f, po C p2 and Xy C Xo.
We show T} F2p2 Ty <1 Fop T{ using sub-arrow. This means we have to show:
* T; <: T4 which we get by induction.
* T4 <:7f which we get by induction.
% p1 C p2. We get this by transitivity of C .
x Yo C X1. We get this by transitivity of C.
e sub-unit: In this case Ay = unit, A; = unit. By inversion on A; <: A3 and Ay <: Ay, respectively,

we find that the only rule with which this would be derivable is sub-unit and hence A5, = unit. We
get unit <: unit with sub-unit.

e sub-nat: In this case Ag = N, A; = N. By inversion on A; <: As and Ay <: Ag, respectively, we find
that the only rule with which this would be derivable is sub-nat and hence Ag = N. We get N <t N
with sub-nat.

O
Lemma 6.2 (World extension ordering). World extension (C) is an ordering.

Proof. Reflexivity: Let 0 be a world and 1 € dom(6). Then 1 € dom(0) and 0(1) = 0(1). Hence 0 C 0.
Transitivity: Let 09,071,052 be worlds such that 6 C 01 and 6; C 05. Let 1 € dom(0p). Then by 64 C 0
also 1 € dom(01) and 6¢(l) = 61(1). By 0; C 05 also L € dom(65) and 0;(1) = 05(1). Transitivity of =
gives us 0g(l) = 05(1). Hence 0y C 0.
Antisymmetry: Let 0,0’ be worlds such that 8 C 6’ and 6’ C 0. We have to show 6 = 0’.

C:

Let (1,7) € 0. This means that 1| € dom(0) and 6(1) = 1. Because 6 C 0’ also 1 € dom(6’) and
0’(l) = . Hence (1,7) € 0'.

o

Let (1,7t) € 0’. This means that 1 € dom(0’) and 6(l') = 1. Because 6’ C 0 also 1 € dom(0) and
0(1) = t. Hence (1,7) € 0. O

Definition 6.1 (Syntactic state well-formedness).
Spr (9) =

dom(0) C dom(S)
A (Ve dom(0).I50;0 -, S(1): 6(1))
A V1 € dom(0).0(1) = type(S,1)
A V1l e dom(S).S(1) e V.
Lemma 6.3. Whenever I'; 2;0 Fpc v : 7, then we also have for any lock set ~" that I'; 250 Fpc v 7.
Proof. By induction on I'; ;0 Fpc v : T.

1. nat: In this case v=n and,n € N and T =N*. We get I £";0 Fpc n: N+ by nat.
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2. A: Inthiscasev=Ax:Ti.eand T =1 —pe To. We know I, x:11;2";0 Fp. €: T2 by inversion.

Hence by AT; 2,0 Fpc A x.e: 1y z—’?e Ty.

3. prod: In this case v = (v1,v3). We replace the assumptions of the rule by the judgements we get
from the induction hypothesis. This gives us the new goal.

4. inr: In this case v = inr v/. We replace the assumption of the rule by the judgement we get from the
induction hypothesis. This gives us the new goal.

5. inl: In this case v = inl v/. We replace the assumption of the rule by the judgement we get from the
induction hypothesis. This gives us the new goal.

6. loc: In this case v = 1. By inversion we know 0(1) = 1. We get I';Z/;0 Fpc 1: T by loc.

7. sub: We replace the typing assumption of the rule by the judgement we get from the induction
hypothesis. This gives us the new goal.

8. unit: In this case v = () and T = unitt. We get I';£/;0 Fpc () : unit® by unit.

Lemma 6.4. If T',x: 7, I";2;0 Fpc e 115 and 7] <: 71y, then I'yx: 7], T, 2,0 Fpc e : To.

Proof. By induction on the derivation of I',x : T1,T"; ;0 Fpc e : To.
The most interesting case is the var rule. There are three cases:

var

Mo,y T M,x:t, M50 kpcy T

In this case we get T,y : T, T, x 17, T"; ;0 Fpc y : T with var.

var
Fox 1y, T 50 bpe x i1y

In this case we get I',x : ], I'"; Z0 Fpc x : 77 with var. We get T',x : ], ""; £0 Fpc x : 71 with sub.

var

Fox:t,To,y: T, M50 Fpcy it
In this case we get Ty, x :11,Tp,y : T, Ty; ;0 Fpcy: T with var.

In all other rules we just replace the judgements in the assumptions by judgments we get from the
induction hypothesis where x : 11 is replaced by x : T; in I'. Then we can derive the goal with the same rule.
O

Lemma 6.5 (A-inversion). If ;2,0 Fpc v : (1 Z—p> )P, thenv=»Ax.eand I'x:7;2;0 H,_ e:To.

Proof. By induction on the derivation of I'; 2;0 Fpc v : (T —2Pe 1,)P. There are only two cases:

e A: In this case this is exactly what the rule says.

. . . bl
e sub: By inversion there is a pc’ O pc and a T/ such that v/ < (19 1 )P and T;2;0 Fper vl
We do inversion on the derivation of T/ < (11 Fope T9)P. The only applicable rule is sub-policy.
, T/ Pe . .
Hence T’ has the form AP  and p’ C p and A <: 71 ~-5° T,. We do another inversion. The only

: . . . z//) ::
applicable rule this time is sub-arrow. Hence A has the form ] ~—¥° 1} where £’ C %’ and

Pe C pi, T1 <t T}, Ty <: To. Hence by induction v has the form A x.e and I',x: 1{;X";0 b5, e : T5.
By Fox 13270 by, e: 15 By weakening (5.2) I',x: 1132’50 Fp, e : 5. Finally we get
Fox:1;2;0 Fp, e: 1y with sub.

O
Lemma 6.6 (Pair inversion). If I'; 2;0 Fpc (e, e’) : (1) x T2)P, then T3 2;0 Fpc e: 1y and T 250 Fpc e« 1o,

Proof. By induction on the derivation of I'; 2;0 Fpc (e,e’) : (11 X T2)P. There are only two cases:
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e prod: The goals are assumptions of the rule.

e sub: By inversion there is a pc’ J pc and a 1’ such that v/ < (11 X 72)P and T;2;0 Fper (e, e’) 1 1/,

We do inversion on the derivation of T/ < (11 X T2)P. The only applicable rule is sub-policy. Hence t’
has the form AP" and p’' Cpand A <: 11 X To. We do another inversion. The only applicable rule this
time is sub-prod. Hence A has the form T} x T4 where 7] <: T, and T} <: T2. Hence T/ = (7} x 15)P".
Therefore we get ;250 Fper e 117 and T3 250 Fper e’ @ 15 by induction. We get ;250 Fpc e : 11 and
250 Fpc e’ : T2 with sub.

O

Lemma 6.7 (Injection inversion).

1 If T 250 Fpcinl(e) : (1 +72)P, then T'; 250 Fpc et 1.
2. If 550 Fpcinr(e) : (t1 +12)P, then T; 2,0 Fpc e : 11
Proof. 1. By induction in the derivation of I'; 2;0 Fpc inl (e) : (T 4 T2)P. There are two cases:

e inl: In this case the goal is an assumption of the rule.

e sub: By inversion thereis a pc’ J pc and a T’ such that v/ < (T1+72)P and I'; 2,0 Fper inl e /.
We do inversion on the derivation of T/ < (11 + T2)P. The only applicable rule is sub-policy.
Hence T/ has the form AP’ and p' Cpand A <: 11 + 2. We do another inversion. The only
applicable rule this time is sub-sum. Hence A has the form T 4+ 14 where 1] <: 71 and T} <: Ta.
Hence ' = (1] +75)P". Therefore we get I'; 250 ¢/ € : T] by induction. We get I'; ;0 Fpc e : 1y
with sub.

2. Asin case 1. Just replace inl with inr and 1 with 2 in the appropriate places.

Lemma 6.8. If I',x: T,T"; ;0 Fpce: v/ and I3 2,0 Fpc e’ 1, then T, T, 250 bpc e[x — e'] i 7'

Proof. By induction on the derivation of I',x : T,T"; Z;0 Fpc e: T'.

In most cases we just replace the typing assumptions of a rule with the assumptions we get from the
induction hypothesis and use the same rule to get the claim. We do, however, need to take a closer look at
var. There are several cases:

e '=T;,y:1',Ty and we have

var

Myt To,x T, T 50 bpcy T/

In this case [e’/x]ly =y and we get T,y : T/, 1%, Z;0 Fpc y : T/ by var.

e T=1" and we have

var

Fox:t, 50 kpex:T

In this case [e’/x]x = e’. We already know I'; 2; 0 Fpc e’ : 1. Weget I',T"; ;0 Fpc e’ : T by [Weakening

e '=T1,y:1/,Ty and we have

var

Fox:t, Tyt T L0 bpcy : T/

In this case [e’/x]ly =y and we get I',T1,y : 7/, 12;Z;0 Fpc y : T/ by var.

Lemma 6.9 (location inversion). If I'; 2;0 Fpc 1: (ref T)P, then 0(1) = 7.
Proof. By induction on the derivation of I'; 2;0 Fpc L: (ref T)P. There are two cases:
e loc: By inversion we have 0(1) = T.

e sub By inversion we have
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— A pc’ C pe such that T;2;0 Fper Le 1/

— 1/ <: (ref T)P.

We do inversion on T/ <: (ref T)P. The only applicable rule is sub-policy. Hence T/ = AP’ and p’ C p
and A <: ref T. We do another inversion. The only applicable rule is sub-ref. Hence A = ref T.
Hence 1t/ = (ref T)P". By induction we get 0(1) = .

O
Lemma 6.10. If I'; ;0 Fpc v: (11 X T2)7, then there are vi, vy s.t. v = (vq, va).
Proof. By induction on the derivation.
e prod: The rule gives us that v = (e, ez). For this to be a value both e; and es need to be values.

e sub: By inversion there is a pc’ J pc and a T/ such that T/ < (19 x T2)P and I'; 2,0 Fper v T/ We do
inversion on the derivation of T/ < (11 X T2)P. The only applicable rule is sub-policy. Hence 1/ has
the form AP’ and p' Cpand A <: 11 X T3. We do another inversion. The only applicable rule this
time is sub-prod. Hence A has the form T} x T4 where T} <: T, and T} <: To. Hence T/ = (1} x 4)P".
By induction we get that there are vi,vs s.t. v = (v1,vs).

O
Lemma 6.11. If ;2,0 Fpc v: (1) + 72)P, then there is a v/ s.t. either v =inl (v/) or v =inr (v/).
Proof. By induction on the derivation.
e inl: The rule gives us that v =1inl e. For this to be a value e needs to be a value.
e inr: The rule gives us that v =inr e. For this to be a value e needs to be a value.

e sub: By inversion there is a pc’ J pc and a 1/ such that v/ < (11 4+712)P and T 2; 0 by viT/. We do
inversion on the derivation of T/ < (11 + T2)P. The only applicable rule is sub-policy. Hence T’ has
the form AP’ and p' Ep and A <: 11 + T2. We do another inversion. The only applicable rule this

. . ’
time is sub-sum. Hence A has the form t{ 4 T} where 11 <: 71 and T} <: To. Hence v/ = (17 +15)P .

By induction we get that there are is a v/ s.t. v=1inl v’/ or v =1inr v’

O
Lemma 6.12. If I'; 2;0 Fpc v : (ref T)P, then v =1 for some L.
Proof. By induction in the derivation.
e loc: The rule gives us that v =1 for some 1.
e sub By inversion we have

— A pc’ C pc such that T;2;0 Fper vt/

— 1/ <: (ref T)P.

We do inversion on T/ <: (ref T)P. The only applicable rule is sub-policy. Hence T/ = AP’ and p’ C p
and A <: ref T. We do another inversion. The only applicable rule is sub-ref. Hence A = ref T.
Hence 1t/ = (ref T)P". Hence we get the claim by induction.

O
Lemma 6.13. If I'; ;0 Fpc v : unit?, then v = ().
Proof. By induction on the derivation of T'; 2;0 Fpc v : unitP.
e unit: In this case v = ().
e sub: By inversion we have

— A pc’ C pc such that T;2;0 Fper vt/

— 1/ < unitP.
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We do inversion on T/ <: unitP. The only applicable rule is sub-policy. Hence T/ = AP’ and p’ C p
and A <: unit. We do another inversion. The only applicable rule is sub-unit. Hence A = unit.
Hence T/ = unit?’ and we get the claim by induction.

O
Lemma 6.14. If ;2,0 Fpc v: NP, thenv=nand n e N.
Proof. By induction on the derivation of I'; 2;0 Fpc v : NP,
e unit: In this case v=mnand n € N.
e sub: By inversion we have
— A pc’ C pe such that T;2;0 Fper vt/
— 1/ <t NP.

We do inversion on T/ <: NP. The only applicable rule is sub-policy. Hence v/ = AP’ and p’ C p
and A <: N. We do another inversion. The only applicable rule is sub-nat. Hence A = N. Hence
v/ = NP’ and we get the claim by induction.

O
Lemma 6.15. If I'; 2;0 bpc v: AP, then also Vpc. T; 250 Fper v AL

Proof. By induction in the derivation. In all cases but sub p = L already and the pc is either arbitrary or
we get the changed pc by induction. In the case for sub we get I';2;0 .~ v : B4 by inversion for some
pc” O pc and B9 <: AP. By inversion of sub-policy, which is the only applicable rule, we get B <: A
and q C p. Induction gives us I'; ;0 Fper v : BL. By sub-policy and we get BL <: AL and
pc’ C pc’. Finally we get I';2;0 Fper v: A with sub. O

Corollary 6.16. If I'; 2;0 Fpc v: AP, then for all policies ¢, pc’ we have I'; 2;0 Fper v A9,

Proof. By [Lemma 6.15[T; 2;0 Fpc/ v: AL, As L is the least policy (4.19) we have AL <: A9 by

and sub-policy and hence by and sub T'; ;0 Fper v A9 O

Definition 6.2 (Policy of an observation). We define the policy of an observation:

pol(lar (v)) £p

pol(open(c)) = pol(o)

pol(close()) £ pol(o)
pol(unopen(c)) £ pol(o)
pol(unclose()) £ pol(o)

In all other cases the policy is undefined.
Lemma 6 17 (Progress). If -; 250 Fpc e : T, then either e is a value or VS, 2".Sp. () — Je’, w, S, 27 2/ F
e, S —=—— L e , S’
Proof. By induction on the derivation.
e var: This rule could not have been applied because the context is empty.
e nat: Numbers are values.

e open:
2 U{0h0kpce:T pc C pol(o)
52;0Fpcopencine: T

open

Let S>. (0) and 2’ be a lock set.

open(c);Z’

By Eopen >’ Fopencoine, S e then unopen o, S.
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e opened:
s2U{okOkpce:T pc C pol(o)

3250 Fpc e then unopen 0 : T

opened

Let S>. (6) and ~" be a lock set. By induction either e is a value v or there are e/, w, 2" S’ s.t

s/
w; X

Y U{o}re S=—¢, S

unopen(o); X’

In the first case by EopenedBeta >’ v then unopen o, S v, S.

s
In the second case 7' b e then unopen 0, S === e’ then unopen 0, S’ by Eopened.

e A: Functions are values.

e prod:
,Z,el_pc €1 .1 ,Z,e }_pc €a Ty

prod
5230 Fpe (er, e2) : (T x o) "

By induction either e; is a value or VS, >'.S. () — ey, w,S1, 2. 2 ey, S TN ef, S7. Similarly

wo;Xo

by induction either es is a value or VS, 2".S>. (0) — Jeb, w,, S5, 2o, I/ - eg, S == e), S.
There are several cases:

— Both e; and e; are values. Then (eq, e3) is a value.

wi;Xy

— ey is not a value. Let 2’ be a lock set and St. (6). Then Jef, w,S1,%,. 2 ey, S

wi;Xg

By EPairl >/ (61, 62), S — (e{, 62), S{

!/ /
e, S7.

— e is a value v and e is not a value. Let 2’ be a lock set and S». (0). Then Jej, w,, S5, 2o, 2/ F

wo;Xa

ey, S=—=—= e}, S;. By EPairr ' F (v, e3), S EEHEN (v, e4), Si.

e app:
£, pc’
5250 Fpeer: (T —P, nyp
520 Fpceg Ty PC T pcLip C pc’ T <0 Ty o

app
,Z,G '_pC €1 €2 1Ty

WL

By induction either e; is a value or VS,Z". S (6) — Jej,w,,S7,%1. 2/ F e, S == e, S].
Similarly by induction either e, is a value or VS, ~".Sr. (8) — Jeb, w,, S5, 25, 2/ F ey, S Laita, e}, S).

There are several cases:

wi;Xy

— ey is not a value. Let 2’ be a lock set and St (6). Then Jef, w,S1,%,. 2/ F e, S =——eq, S.

wi;Xy

By EAppl 2/ - ej es, S === e] ey, S1.

— e; isavaluev and ey is not a value. Then by[Lemma 6.5|e; has the form Ax.e. Let ©’ be a lock set
and S, (). Then Jel, o, Sh, o, T/ F 9, S 222 ], S5, By EAppr &/ - (Ax.e) eg, S 22
(Ax.e) e, Si.

— Both e; and e; are values. Then by [Lemma 6.5 e; has the form Ax.e. Say e; =v. Let ' be a
lock set and St. (6). Then by EAppBeta >’ - (Ax.e)v, S % elx —v], S.

o fst:
55 0kpce:(tixw)?  pLT

fst
5230 Fpc fst (e) 1 Ty s

Let S>. (6) and ~" be a lock set. By induction either e is a value v or there are e/, w, 2" S’ s.t
w;x”

Y ke S=—=¢S"

In the first case by [Lemma 6.10|v = (v1, v2). Hence by EFstBeta ' |- fst ((vy, v2)), S % vy, S.

w; X

In the second case by EFst >/ - fst(e), S =——= fst(e’), S’.
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e snd:
520 Fpce: (T x )P P LT

snd
5230 Fpc snd (e) 1 T2

Let S». (6) and ~" be a lock set. By induction either e is a value v or there are e’,w, 2" S’ s.t

w;x
ke S=——¢', 8§

In the first case by [Lemma 6.10{v = (v, v2). Hence by ESndBeta >’ I snd ((v1, v2)), S SN Vg, S.

R
w;x

In the second case by ESnd >’ snd (e), S === snd (e’), S’.
e inl:
7Z,G|_pc e. T
5230 Fpcinl(e) @ (1 + )t

inl

By induction either e is a value v or ¥S, 5/, Si. () — Je/, w,S", 5. ¥/ F e, § s ¢/, .

In the first case inl (v) is a value. In the second case let =’ be a lock-set and S such that S . (0).
Then there are e’,~", w,S’ such that ' - e, S % e’, S’. Hence by EInl ~' F inl(e), S %
inl(e’), S’.
e inr:
-;Z;Gl—pc e: Ty
5250 Fpcinr(e) : (T + 1)t

inr
By induction either e is a value v or VS, 2. S. (6) — Je’, w,S’,2". 2 e, S Lt e, S
In the first case inr (v) is a value. In the second case let =’ be a lock-set and S such that S . (0).

L5
w; Xz

Then there are e’, 2", w,S’ such that ' e, S === e’, S’. Hence by EInr >’ I inr(e), S L
inr(e’), S’.

® case:

,Z,G }_pc e . (T] +T2)p
pCr XT3 50 bpap €10 T Y150 bpop €20 T T < Ty Ty < T

case
3230 Fpc case e of [inl (x) = ey inr(y) = ex: T

Let >~/ be a lock-set and S such that Si. (0). By induction either e is a value v or there are e’, S’ w, >”

such that &' F e, S 2= ¢/, S/

In the first case there are two options. Either v = inl (v/) or v = inr (v') for some v’ (see|[Lemma 6.11]).
— v=inl(v/). Then by ECasel

5/ b (case inl (v) of inl (x) = e1 |inr (y) = ea), S == e1[x = V], S.

— v =inl(v’). Then by ECaser
2" F (case inr (V') of |inl (x) = ey |inr(y) = e2), S N eslx — V'], S.

In the second case by ECase X' | case e of |inl (x) = e |inr(y) = e, S (:U—£:> case e’ of |inl (x) =
ey |inr(y) = eq, S'.

® new:

550 kpce: T pcC T () <t

5230 Fpc new (e, T) @ (ref T)

Let = be a lock-set and S such that Sr.(0). By induction either e is a valuevor ' I e, S Lt e’ S
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le(v);Z/

In the first case let 1 ¢ dom(S). Then by ENewBeta > - new (v, T), S L SuU{l— (v, 1)}
In the second case ' F new (e, 1), S L hew (e’,7), S

loc: Locations are values.

sub:
520 Fpe et pc C pc’ <t b
su
52;0kpce:T
We get the claim from the induction hypothesis.
deref:
520 Fpc e (ref )P pCT T<: T

deref

,Z,e ch !e:T/
Let =’ be a lock-set and S such that S>. (6). By induction either e is a value v or there are e’, S, w, 2"
such that ' e, S AN e, S

In the first case there is some 1 such that v = 1 by |Lemma 6.12} Hence -;2;0 Fpc 1: (ref T)P. By
Lemma 6.9/0(1) = T. In particular | € dom(0) Because S. (0) and 1 € dom(0), | € dom(S). Hence

there are v, T such that (L — (v, T)) € S. Therefore by EDerefBeta ' F!1, S % v, S.

w;x”’

In the second case we have >/ Fle, S =—=="!e’, S’ by EDeref.
assign:

5250 Fpc e (ref T/)P (o) <1 55 0kpce’ T pcUp C 1/
52530 Fpc e =€ unit”

assign

Let = be a lock-set and S such that S>. (0). By induction either e is a value v or there are e”,S’, w, 2"
w; X

such that =/ F e, S === e”, S’. Similarly either e’ is a value v’ or there are e’”’,S”,w’,~" such

(U/;z//

that 2/ Fe’, S =—=——=¢e", S".

There are several cases:

" 1
w;z w; X

— Y ke S==2¢", S Inthiscase 2’ Fe:=e’, S == e” :=¢’, S’ by Eassignl.

s
w’;Z

—eisavaluevand 2/ e, S e’ S”. Then by [Lemma 6.12[ v = 1 for some L. Hence

IkF1l:=¢"S L= e, S” by Eassignr.

— Both e and e’ are values v and v’ respectively. In that case v =1 for some 1 by [Lemma 6.12] By
Lemma 6.9|0(1) = /. Hence 1 € dom(08). Consequently we get 1 € dom(S) from S>. (0). Let
" = type(S,1). Then &' 1:=v/, § =Ly (), S[L— (v/, 7")] by Eassign.

unit: () is a value.

close
52\{ohObpce:T pc C pol(o)

5230 Fpcclosecine: T

close

close(o);’

Let St. (0) and ' be a lock set. By Eclose ¥’ | close 0 in e, S =——==—=> e then unclose 0, S.

closed:

52\{ohObkpce:t pc C pol(o)
3250 Fpc e then unclose 0 : T

closed
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Let S». (6) and ~" be a lock set. By induction either e is a value v or there are e, w, 2" S’ s.t

s
w;x

I"\{o}re S=—=¢€', S".

unclose(o);z’

In the first case by EclosedBeta >’ | v then unclose 0, S v, S.

;X
In the second case ~’ I e then unclose 0, S ====> e’ then unclose o, S’ by Eclosed.

e when:
) ru {6}7 0 l_pcupol(n} €1:7T B Z7 0 l_pCUpol(u‘) €T pOI(G) Ct
when

3230 Fpc when 0 then e else ey : T

Let St. (0) and X’ be a lock set. We do case analysis on 0 € X',

I
Wiy ’

— o € 2/. By induction either e; is a value vy or there are ef, w;,2/,S{,st Z' ke, S ——e], S7.
In the first case by EWhenOpenBeta >’ - when o then vy else e3, S e vy, S.
In the second case by EWhenOpen
2" F when 0 then eq else es, S L=y when o then ej else eg, S7.

— o ¢ ~'. By induction either ey is a value vy or there are e}, wo, >/ S5, s.t. 2/ es, S e

e}, S4. In the first case by EWhenClosedBeta >’ I when o then e; else vo, S SN va, S.

In the second case by EWhenClosed
when O then ej else ez, 2/, S, when 0 then e else e, S5, wo, Z/.

O
Lemma 6.18 (Preservation). I'12;0 Fpc et 17 — VL. 2/ F e, S Ll e, S"ANSpr(0) — 30’.6/ 3
ONAT; 20" Fpce’ :TAS pr (67).
Proof. By induction on the typing derivation.
e Var: Variables don’t reduce.

e nat: Numbers are values and don’t reduce.

e open:
MZU{chA Ok pce:T pc C pol(o)
- open
20 Fpc open(o) ine:t
The reduction could only have happened with Eopen:
; Eopen

open ogin e, X’ S = opened o in e, S, open(o), X

It suffices to show TI'; 2;0 Fpc opened o in e: T which we get from opened using the premisses from
the open rule.

e opened:
MZU{ohA B0k ce:T pc C pol(o)
- opened
I2;0 Fpc opened(o) ine: T
There are two cases:
— The reduction happened with Eopened:
e, U{c},S>¢e',S" w,r"
Eopened

opened oin e, X', S - opened oin e’, S, w, "
By the assumptions of the rules opened and Eopened and by S (0) we get that there is a 6’

such that 6 3 0, S’ >r (0') and T; Z U{0};0’ Fpc e’ : T using the induction hypothesis. As we
already know pc C pol(o), we get I';Z;0 Fpc open o in e’ : T using opened.
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— The reduction happened with EopenBeta:

— EopenBeta
open o(a) inv,X’",S = v, S, unopen(o), £’

In this case e = v. It suffices to show I'; 2;0 Fpc v T.
We already know I'; Z U{0}; 0 -, v: 1. The goal follows by

e A: Functions are values and don’t reduce.

e prod:
r, Z, 0 l_pc e T r, Z, 0 |_pc €o I To prod
T 258 bpc (e1,e2) ¢ (11 x 1)t
There are two cases:
— The reduction happened with EPairl:
e, L', S=e}, S w, "
EPairl

(elv 62)7}:/78 > (e{a 62);8,7 w,Z//

We already know S (0). Hence by induction there is a 8 such that 8’ 3 0, S’ >r (6’) and
IZ,0 Fpceq:Ti. Byalso I 2,0 Fpc ea:Ta. We get the claim by prod.
— The reduction happened with EPairr
e, X', S =e5 S w, "
(V7 62)7 Z/a S > (V, eé)v S/a w, z

- EPairr

In this case e; = v. We already know Sir (60). Hence by induction there is a 6/ such that 6’ 3 6,

S'pr(0') and T',X,0 Fpc ey : T2. By also I', 2,0’ Fpc v: 1. We get the claim by
prod.

e app:

50 Fpe er (1 8¢ 1o)P
I550 Fpcex:my PC 1o pclp C pe T <1y roxy!

a
T30 Fpc er €2 T i

There are three cases:
— The reduction happened with EAppl:

e, 2", S=e, S w,L"”
e; es, X" S =ej e, S w, L

EAppl

We already know S >r (0). Hence by induction there is a 0 such that 8’ 3 0, S’ > (6/) and

IZ,0 tpcel:(m Lpe To)P. Byalso IZ,0 Fpcex:t]. Weget I'Z,0" Fpcefer:
T2 by app.
— The reduction happened with EAppr:
e, 2" S e} S w, "
(A x.e) e, L S = (A x.e) ey, S w, "

EAppr

In this case e; = A x.e. We already know S > (0). Hence by induction there is a 8’ such that

0’ 30,S>r(0') and I'Z,0" Fpc ej @ 1. Byalso IZ0 FpcAxe: (T Elpe To)P.
We get I',Z,0" Fpc (A x.e) ej : T2 by app.

— The reduction happened with EAppBeta:

EAppBet
(Ax.e)v,2" S > [v/xle,S, e, 2" ppbeta
In this case e; = A x.e and ey = v. It suffices to show I'; 2;0 Fpc [v/xle : T2. By
Fox:1;250 Fp, e: T2, By we get I',x:1;;5;0 . e : To. With sub we get
Ix:71;2;0 Fpc e : To because pc Up T pe and hence also pc C pe by [Lemma 4.13] and

With sub we get I';2;0 Fpc v : 11. Hence by [Lemma 6.8 T; 2;0 Fpc [v/x]e : T2
which is what needed to be shown.
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o fst:
250 Fpce: (11 xT2)P PpCTy

fst
250 Fpc fst(e) : 1y
There are two cases:
— The reduction happened with EFst.
e, 2. S=¢e' S w, "
EF'st

fst(e),Z’,S = fst(e’),S’, w, "

We already know S >r (0). Hence by induction there is a 6’ such that 6/ 3 6, S’ > (0/) and
I 20" Fpc e’ 1 (11 X T2)P. We obtain the goal with fst.
— The reduction happened with EFstBeta

EFstBeta

fst((v,v')),Z",S = v,S,¢e, X’

In this case e = (v,v’). By we get ;2,0 Fpc v : 1y which is sufficient to show the

goal.
e snd:
250 Fpce: (11 xT2)P PC T
snd
250 Fpc snd(e) : T2
There are two cases:
— The reduction happened with ESnd.
e, S=¢e',S w,2"
- ESnd

snd(e),2’,S > snd(e'),S", w, X

We already know S >r (0). Hence by induction there is a 0’ such that 6/ 3 0, S’ > (6’ and
I 20" Fpc e’ : (11 X T2)P. We obtain the goal with snd.

— The reduction happened with ESndBeta

ESndBeta

snd((v,v)),Z",S>=v',S,¢e, L’

In this case e = (v,v’). By we get ;250 Fpc v/ T which is sufficient to show the
goal.

e inl:
50 kpce:T

M550 Fpe inl(e) @ (tq +T2) "

inl
The reduction could only have happened with EInl.

e, ,S=¢e' S w, "
inl(e),Z’,S = inl(e’),S’, w,

- ElInl

We already know Str (6). Hence by induction there is a 8’ such that 0’ 3 0, S'>r (6’) and I'; Z; 0 Fpc
e’ :11. We obtain the goal with inl.

e inr:
F;Z;erce:Tg .
mr
I 250 Fpe inr(e) : (11 + T2)*
The reduction could only have happened with EInr
e, 2. S=¢e' S w, "
Elnr

inr(e),2’,S = inr(e’),S’, w, "

We already know S >r (0). Hence by induction there are is a 6’ such that 8’ 3 0, S’ > (8’) and
I Z;0' Fpc e’ : 13. We obtain the goal with inr.
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® case:

F,Z,G |_pc e: (Tl +T2)p
pCT Fox T 50 bpeup €10 T Ty 19550 Fpeup €20 T T < T Ty <: T

case
250 Fpc case(e, x.eq,y.e2) : T

There are three cases:
— The reduction happened with ECase:

e, 2. S=¢e' S w, "

ECase
case(e,x.e1,y.ea), L', S = case(e’, x.e,y.€2),S", w, "

We already know S r (0). Hence by induction there is a 0’ such that 8’ 3 0, S’ >r (6’) and
20 Fpce' (11 +712)P. Weget Iyx:135;0" Fpeup eritand I,y 1193 50" Fpeup €2 1 T by
We get I £;0' Fpc case(e’, x.e1,y.e2) : T with case.

— The reduction happened with ECasel:

EC 1
case(inl v,x.e1,y.e2), 2", S = [v/xle1, S, €, L’ ase

In this case e = inlv. It suffices to show I'; 2; 0 Fpc [v/x]e; : 7. We already know I',x : 713 Z;0 Fpeup
e; : T. We get I';2;0 Fpc v : 11 by [Lemma 6.7l From this we get I',x : 71;2;0 Fpc ey : T and
I 250 Fpe vit] with sub and |[Lemma 4.6, We get the goal by

— The reduction happened with ECaser:

- 7 ; ECaser
case(inr v,x.ej,y.e2), L', S = [v/yles, S, €, X

In this case e = inrv. It suffices to show I'; 2; 0 Fpc [v/x]es : 1. We already know I', x : 155 2;0 Fpeup
ey : T. We get I';2;0 Fpc v i 11 by |Lemma 6.7. From this we get I',x:T5; ;0 Fpc ez : T and
I';2;0 Fpc v 15 with sub and [Lemma 4.6} We get the goal by [Lemma 6.8

® new:
M50 kpce:t pcC T T(5) <t

250 Fpc new (e, T) : (ref )t

There are two cases:
— The reduction happened with ENew:

e, S=¢e',S" w, "

ENew
new (e, 7),L’,S = new (¢’,71),S", w,Z”

We already know S >r (0). Hence by induction there is a 6’ such that 6/ 3 0, S’ > (0/) and
I 20" Fpc e’ : T/. We obtain the goal with new.

— The reduction happened with ENewBeta:

1 ¢ dom(S)
new (v,1),L.S>=1LSU{l— (v,T)},l:(v), X’

ENewBeta

In this case e = v. Let 8’ = 0[l — 1]. It is clear that 6’ extends 6. We show SU{l — (v, T)}>r(0).
We have to show

x dom(0’) C dom(SU{l— (v,T)}).

Let ' € dom(0’). There are two cases:
- 1" € dom(0). Then by Str (6) we have 1’ € dom(S) and consequently 1’ € dom(SU{l —
(v, )}).
- 1" =1. In this case I’ € dom({l — (v,T)}) and consequently I’ € dom(S U{l — (v,T)}).
* VI’ € dom(0').I;0;0’ -, SU{l — (v,T)}1'):0'(l)

Let I/ € dom(0’). There are two cases:
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- 1" € dom(0). Then by S (0) we have I';0;0 ;. S(1') : 8(l). Because 8’ 3
have 0(1’) = 0’(1') and we have S(1’) = SU{l — (v,T)}(l’). Hence we have T';{;
SU{l— (v, T)Hl') : 0'(l). We get the claim by

- 1" =1. In this case we have to show T';0;08’ -, v: 1. We already have I'; 2;0 Fpc v: T’
By weakening we get T';Z;0’ Fpc v @ T/, There must be types A and B and policies g
and p such that B4 = 1t/ and AP = 1. Then B9(¥) <: AP. By inversion we get B <: A.
By we get I';2;0" Fpe v: BP. By sub-policy and p <: AP.
Hence T;Z;0” | v : AP by sub and [Lemma 4.1 as L C pc by We get
I;0;0" 1 v: AP by [Lemma 6.3

* VI’ € dom(07).0’(1) = type(SU{l — (v,T)},l).
Let I/ € dom(0’). Again there are two cases:

- 1" € dom(0). Then by S>r(0) we have 6(1') = type(S,1’). Asl ¢ dom(S) we know 1’ # L.
Hence type(S,1’) = type(SU{l — (v, 1)}, 1’). Therefore 68(1") = type(SU{l — (v, T)},1")

- 1" =1. In this case 0’(1) = T = type(SU{l — (v,7T)},1) by construction.

¥ VI’ € dom(SU{l — (v, T)}).SU{l — (v,T)} (l") € V. There are two cases:
- 1" € dom(S). Then we have SU{l — (v,T)}(l') = S(1) and S(1) € V by Ser 0.
- 1" =1. In this cases it suffices to show v € V. This is the case by assumption.

0 we
0+,

——

All that remains to be shown is I'; £;0 Fpc L: (ref (1))* which we have using loc.
e loc: Locations are values and do not reduce.

e sub:
I5;0Fpc e:t’ pcCpe’ <t

F;Z;erce:’t

sub

By induction there is a 8’ such that 6’ 36, S'>r (0") and I'; Z;0" Fper e’ : v/, Weget I'; 2,0 Fpc et
by sub.

e deref:

F,Z,el—pc'e’t

550 Fpc e (ref T/)P pCr <
deref

There are two cases:
— The reduction happened with EDeref:

e, 2. S=¢e' S w, "
le,2’.S =!(e’),S", w, X

- EDeref

We already know S (0). Hence by induction there is a 0’ such that 8’ 3 0, S’ >r (6’) and
20" Fpc e’ : (ref T)P. We obtain the goal with deref.

— The reduction happened with EDerefBeta:

l— (v,7)es

15 S=vS e EDerefBeta

In this case e = L. It suffices to show I'; 2;0 Fpc v: 1/, We know T 250 Fpc L: (ref T)P already.
By [Lemma 6.9]8(1) = T. By assumption Sr (0). Since 1 € dom(6), this gives us I;(;0 - vt
and v € V. We already know T <: v/ We get T;0;0 -1 v: T’ by sub and Finally we
get the goal by [Weakening| and |Corollary 6.16}

e assign:

250 bpc e (ref(t'))P () < M50 kpce pcUpCT
550 Fpe e:= e’ tunith

assign

There are three cases:

30



— The reduction happened with Eassignl

e, 2. S=¢e"”. 8w,z
e=¢e L' S=¢e":=¢',S, w, L

Eassignl

We already know S r (0). Hence by induction there is a 0’ such that 8’ 3 0, S’ >r (6’) and

20 Fpc e’ @ (ref T/)P. By also T;Z;0" Fpc e’ : 1. We get ;5,0 pc e’ :=e':
unitt by assign.

— The reduction happened with Eassignr

e/, 2. S=e” S w, X"
l=¢e,Z'S=1=¢"S" w, X

; Eassignr

In this case e = 1. We already know S >r (0). Hence by induction there is a 8’ such that

0’ 36,S >r(0") and I'Z;0" pc e” 1 1. By also ;20" Fpc 1t (ref T/)P. We get
;%0 Fpc Li=e” :unit* by assign.

— The reduction happened with Eassign

1 € dom(S) type(S,1) =1”
l:= V,Z/7S -~ ()75[1 — (V7T//)]71T”(\))7Z

; Eassign

In this case e =1 and e’ =v. It suffices to show I'; 2; 0 Fpc () sunitt and
S[l— (v, ") >r (). We get the first with unit. For the second we have to show:

* dom(0) C dom(S[l — (v,T")]).

Since 1 € dom(S) we know dom(S[l — (v,T”)]) = dom(S). Hence it suffices to show
dom(0) € dom(S) which we already know from S (0).

* VI’ € dom(0).T;0;0 F, S[L— (v,T")](1"): 0(1").

Let I/ € dom(0). There are two cases:

UV #£L

V=L

In this case S[l — (v,t”)](l') = S(l'). We already know T;0;0 F, S(l) : 8(1') from
S >r (6)

In this case S[l — (v, T")](l') = S[L — (v,T”)](1) =v. So we have to show I'; ;0 -, v:
o(1).

We know I'; 258 Fpc L: (ref T/)P. By [Lemma 6.9)6(1) = t’. We already know T’; £; 6 tpc
v:tand T(X) <: t/. There must be types A and B and policies q and r such that A9 =t
and B" = 1/. Then A9(}*) <: B". By inversion we get A <: B. Bywe get

I''%;0 Fpc v: A", By sub-policy and AT <:B". Hence I'; ;0 -, v:B" by
sub and as L C pc by We get the goal by

x V1’ € dom(0).0(1") = type(S[l — (v,t”)],1). Let I’ € dom(0). There are two cases.

- 1" # 1 In that case type(S,l’) = type(S[L — (v,T”)],1"). We know 0(1') = type(S,1’)

from S>r 0. Hence also 6(1) = type(S[l — (v,t”)], 1)

- 1" =1By Srcr 6 we know 0(1) = type(S,1’). We also know type(S,1) = t”. Hence

(1) =0(1) =" = type(SIL — (v,T")],1) by construction.

* VU € dom(S[l — (v,t”)]).S[L — (v,T"”)](1") € V. There are two cases:

- 1" # 1. In this case S[l— (v,t”)](l') = S(l'). We have S(1’) € V by Svr 6.
- 1" =1. In this case we have to show v € V. We have this by assumption.

e unit: () is a value and does not reduce.

e close:

M\ 0 Fpce:T pc C pol(o)

- close
I 2;0 Fpc close(o) ine: T

The reduction could only have happened with Eopen:

Eclose

close cine,Z’ S > closed o in e, S, close(o), L’

It suffices to show I'; ;0 Fpc closed o in e : T which we get from closed using the premisses from
the close rule.
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e closed:
M\ 0Fpce:T pc C pol(o)

- closed
250 Fpc closed(o) ine: T

There are two cases:
— The reduction happened with Eclosed:

e, X\{c},S = ¢',S", w,x”

Eclosed
closed o0in e, Z',S = closed oin e’, S, w, Z”

By the assumptions of the rules open and Eopen and by S > (0) we get that there is a 8’ such
that 0 3 0, S’ >r (07) and I'; Z\{0}; 0’ Fpc e’ : T using the induction hypothesis. As we already
know pc(Z) C pol(o), we get I';Z;0" Fpc closed o in e’ : T using Eclosed.

— The reduction happened with EclosedBeta:

EclosedBeta

closed o0 in v, Z’,S = v, S, unclose(o), L’

In this case e = v. It suffices to show I'; 2; 0 F-pc v : 7. We already know TI'; Z\{0}; 0 Fpc v: T and
get the goal by

e when:

r; ru {0}; 0 }_pcl_lpol(cr) €1:7T r; L 0 l_pcupol(c) €T POl(U) Ct

h
250 Fpc when (o) then e; else ez : T when
There are four cases:
— The reduction happened with EWhenOpen:
oecx’ e, 2, S=e}, S w, "
EWhenOpen

when o then e else e», X', S = when o then e else e, S, w, X"

We already know S 1 (0). Hence by induction there is a 6’ such that 6/ 3 6, S’ > (0/) and

M Zu{o};0’ Fpeupot(o) €1 : T By we also get T;2;0 Fpcipol(o) €2 @ T. The goal
follows with when.

— The reduction happened with EWhenClosed:

ogzx e, L', S = e5 S w, "

EWhenClosed
when o then e; else ey, L', S = when o then e; else e}, S’ w,L”

We already know S >r (0). Hence by induction there is a 8’ such that 6’ 30, S’ >r (67,A’) and

fF;Z;G’ Fpcupol(s) €2 1 T. By we also get I';ZU{0};0" Fpcupol(o) €1 @ T. The goal
ollows with when.

— The reduction happened with EWhenOpenBeta:

cex’
when o then velsee’,2’,S>v,S,¢e, X’

EWhenOpenBeta

In this case e; =v. It suffices to show I'; ;0 Fpc v : 1. We already know I'; ZU{0};0 Fpciipot(o)

v:T. We get T3 250 Fpepot(o) Vi T by [Lemma 6.3] Finally we get T; 250 Fpc v : T with sub and
Lemma, 4.0l

— The reduction happened with EWhenClosedBeta:

ogx

7 - EWhenClosedBeta
when o then e else v,X',S > v,S ¢, X

In this case e; = v. It suffices to show I'; ;0 Fpc v: T. We already know I'; £;0 Fcupot(o) Vi T

We get the goal with sub and
O
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Lemma 6.19. If I;2;0 Fpce: 7, then VL', S. Spr @ — 2/ ke, S LN e, S" = pol(w) =p — pc C p.

Proof. By induction on the typing derivation.
e Var: Variables don’t reduce.

e nat: Numbers are values and don’t reduce.

e open:
MLU{ohA B0, ce:T pc C pol(o)
- open
20 Fpc open(o) ine:t
The reduction could only have happened with Eopen:
; Eopen

open oine, X', S - opened oin e, S,open(o),

pol(open(o)) = pol(o) d pc.

e opened:
MZUu{chA0Fpce:T pc C pol(o)
- opened
I2;0 Fpc opened(o) ine: T
There are two cases:
— The reduction happened with Eopened:
e, 2 U{o},S ¢, w,z"
Eopened

opened oin e, £’,S = opened o ine’,S", w, "

By induction pol(w) =p — pc C p.
— The reduction happened with EopenBeta:

= EopenBeta
open o(d) inv,Z’,S = v, S, unopen(c), L’

In this case e =v. pol(unopen(c)) = pol(c) I pc.

e A: Functions are values and don’t reduce.

e prod:
F;Z;Ol—pc €1 Ty F;E;Ol—pc €9 . Ty d
pro
250 Fpe (e, e2) : (11 X T2) "
There are two cases:
— The reduction happened with EPairl:
e, L', S=e}, S w, " EPairl
(61762)7ZI,S> (e{anJ;slvwaz// o
By induction pol(w) =p — pc C p.
— The reduction happened with EPairr
e, X', S =e5 S w, " )
5 EPairr

(V, 62)7 Zlv S - (V, eé)7 Slv w, r
In this case e; = v. By induction pol(w) =p — pc C p.

e app:
rv.0h . " pe P
) pc €1 : (t1 7" T2)
5250 Fpcea: ) PC 1o pclip C pe T <y rox”

app
F,Z,G ch €1 €2 T2

There are three cases:
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— The reduction happened with EAppl:

i A / 1
e, 2, S>e, S w, X

EAppl
e €2, S~ej ey, S, w, " PP
By induction pol(w) =p — pc C p.
— The reduction happened with EAppr:
e, 2. S=e} S w,
EAppr

(A x.e) es, L', S = (A x.e) e5, S, w, 2"

In this case e; = A x.e. By induction pol(w) =p — pc C p.
— The reduction happened with EAppBeta:

EAppBet
(Ax.e) v,27.S = v/xle, S, e, L/~ ppBeA

In this case e; = A x.e and es =v. pol(e) is undefined. Hence there is nothing to show.

o fst:
ML0kpce:(tixT)?P  pCm st
T30 Fpe fstle) : 1 ®
There are two cases:
— The reduction happened with EF'st.
e, 2. S=¢e' S w, " EFst
fst(e), 2/, S = fst(e), S, w, 2"
By induction pol(w) =p — pc C p.
— The reduction happened with EFstBeta
EFstBeta

fst((v,v)),Z",S = v,S,¢e,%’

In this case e = (v,Vv’). pol(e) is undefined. Hence there is nothing to show.

e snd:
M50 Fpce: (1 X 12)P PC T 4
sn
250 Fpc snd(e) : T2
There are two cases:
— The reduction happened with ESnd.
e, . S=¢e',S" w, L ESnd
snd(e),Z’,S = snd(e'),S’,w, " "

By induction pol(w) =p — pc C p.

— The reduction happened with ESndBeta
; ESndBeta

snd((v,v)),Z',S =v',S,e, L
In this case e = (v,Vv’). pol(e) is undefined. Hence there is nothing to show.

e inl:
F,Z,e }_pc €. T

- - inl
I 250 Fpc inl(e) : (T1 + T2)

The reduction could only have happened with EInl.

e, 2. S=¢e' S w, "

ElInl
inl(e),2/,S = inl(e/),S,,w, 2"

By induction pol(w) =p — pc C p.
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e inr:
I25,0 Fpce: T
M550 Fpe inr(e) : (11 + 1)t

inr
The reduction could only have happened with EInr

e, 2. S=¢e' S w, "
inr(e),Z’,S = inr(e’),S’, w, "

Elnr

By induction pol(w) = p — pc C p.
e case:

r, Z, 0 ch e: (Tl +T2)p
pCT Fox T 50 bpeup €10 T Ty 19550 Fpeup €21 T T <7 Ty <: T
20 Fpc case(e, x.eq,y.e2) : T

case

There are three cases:

— The reduction happened with ECase:

e, . S=¢e' S w, "

EC
case(e,x.e1,y.€2), 2", S = case(e’, x.e1,y.e2),S’, w, L” ase
By induction pol(w) =p — pc C p.
— The reduction happened with ECasel:
ECasel

case(inl v,x.e;,y.e2), 2", S = [v/xle,S,€,L’

In this case e = inl v. pol(e) is undefined. Hence there is nothing to show.

— The reduction happened with ECaser:

EC
case(inr v, x.e1,y.e2), L', S = [v/yles, S, €, L’ aser

In this case e = inr v. pol(e) is undefined. Hence there is nothing to show.

* new:
I 250 kpce:t pcC T (D)<t
250 Fpc new (e, T) : (ref ot

There are two cases:

— The reduction happened with ENew:

e, 2. S=¢e' S w "

EN
new (e,1),L’,S > new (e’,1),S’, w, X" v
By induction pol(w) =p — pc C p.
— The reduction happened with ENewBeta:
1 ¢ dom(S
z (5) ; ENewBeta

new (v, 1), L, S =1L SU{l— (v, 1)}, lc(v), Z

In this case e =v. pol(l:(v)) = pol(T). We have pc C T as an assumption. Hence pc C pol(T).
e loc: Locations are values and do not reduce.

e sub: .

M;0kpere:t  pcCpc’ <t
F;Z;el_pce:’t

By induction if pol(w) = p, then pc’ E p. We know pc C pc’. We get the claim by

sub
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e deref:
20 bpc e (ref T)P pCt T<: v

F;Z;e}_pcle:ﬂf/

deref

There are two cases:
— The reduction happened with EDeref:

e, . S=¢e' S w, "

le.5/.S 1(e). S w, 5" "oeref
By induction pol(w) =p — pc C p.
— The reduction happened with EDerefBeta:
L— (v,t)es
EDerefBeta

,2,S=v,S8,¢,%/
In this case e = 1. pol(e) is undefined. Therefore there is nothing to show.
e assign:

250 bFpc e (ref(t'))P () <7 M5;0kpce’ :t  peUpC T
550 bFpe e:= e’ tunith

assign

There are three cases:

— The reduction happened with Eassignl

e, 2. S=¢e"”, S w,x"
e=e" X' S=e" =¢S5 w,X

-, Eassignl

By induction pol(w) = q — pc C q.
— The reduction happened with Eassignr

e, 2 S=¢e", 8 w, "

T2/, 5 = L= e, w, o/ ossienr
In this case e = 1. By induction pol(w) =q — pc C q.
— The reduction happened with Eassign
1 € dom(S) type(S, 1) =1” .
; Eassign

L=, S (),SL— (v, ")}, Lo (v), £

In this case e = L and e’ =v. pol(l~(v)) = pol(t”). We know I'; 250 pc 1: ref(t')P. Hence by
Lemma 6.9/0(1) =1’. By S>r 0 0(1) = type(S,1). Because type(S,1) = 1", we have v/ =1"”. We
have pc Up C 1’. By [Lemma 4.6} [Lemma 4.1| and [Definition 3.2| we have pc C pol(t”) which is
what we needed to show.

e unit: () is a value and does not reduce.

e close:

MI\{oh0Fpce:t pec C pol(o)

close
250 Fpc close(o) ine: T

The reduction could only have happened with Eopen:

Eclose
close cin e, X', S >~ closed o in e, S, close(o), L’

pol(close(o)) = pol(o) and we have pc C pol(o) by assumption.
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e closed:
M\ 0Fpce:T pc C pol(o)

losed
250 Fpc closed(o) ine: T close
There are two cases:
— The reduction happened with Eclosed:
e, X'\{c},S = ¢e’,S" w,L”
\lo), i Eclosed

closed cin e, X’,S > closed ocine’,S', w, X"
By induction pol(w) =p — pc C p.
— The reduction happened with EclosedBeta:

closed o0 in v, Z’,S = v, S, unclose(o), L’

EclosedBeta

In this case e =v. pol(unclose(c)) = pol(c). We know pc C pol(c) by assumption.

e when:

MLy {G}; 0 }_pcl_lpol(tr) €1:7T 250 |_pcl_lpol(cr) €21 T POL(U) Ct

2,0 Fpc when (o) then e; else ey : T
There are four cases:

— The reduction happened with EWhenOpen:
oex’ e, 2, S~e;, S w, "

when o then e; else es, L', S = when o then e else e, S, w,Z”

when

EWhenOpen

By induction pol(w) =p — pc U pol(c) C p. Because pc C pc LI pol(o) by we get

pol(w) =p — pc C p by [Lemma 4.1]
— The reduction happened with EWhenClosed:

og e, X', S =e) S w, "

when o then e; else e;, X', S = when o then e; else e}, S, w, X"

By induction pol(w = p) — pc U pol(c) C p. Because pc C pc L pol(c) by we get

pol(w =p) — pc C p by [Lemma 4.1}
— The reduction happened with EWhenOpenBeta:

ocecx’
when o thenvelsee’, 'S ~v,S, ¢, X’

EWhenOpenBeta

In this case e; =v. pol(e) is undefined. Hence there is nothing to show.

— The reduction happened with EWhenClosedBeta:
ogyx’ o =S(a)
when o then e else v,Z’,S = v,S,¢e, L’

EWhenClosedBeta

In this case e; =v. pol(e) is undefined. Hence there is nothing to show.

EWhenClosed

O

Theorem 6.1 (Type Safety). If -; ;0 Fpc e : T, then either e is a value, or for all states S such that S >. 0

and for all lock sets >/, there are e’,S’, w, 2", 0’ such that

Ly
w;z

ke S=—=¢€ S

where 8/ 20, S' >. 0’, and -;2;0" Fpc e’ : 7. Also if pol(w) = p, then pc C p.
Proof. There are two cases:

1. e is a value. This proves the goal.

2. e is not a value. In this case let S be a state such that S. (0) and let ~’ be a lock set. Then by

Progress| there are e’,S’, w, " such that ¥/ e, S === e’, S’. Then by

Preservation

there is a 0’

such that 0/ 30, S’>. (0") and -; 2;0’ Fpc e’ : T and by [Lemma 6.19|if pol(w) = p, then pc C p.
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7 Logical relations

7.1 Unary relation

Definition 7.1 (Substitutions). Substitutions §,8’, 8y, etc. are partial functions from variables to values.

Definition 7.2 (Substitution usage).

5(x) = e if5(x)=e
S(y) £y if y ¢ dom(8)
d(n) & n
(Ay.e) £ AY. 8ldom(s)\(y) (€)
5(e’e”) = (8(e")) (8(e”))
5(0)=0)
s(1) 21
§(inl (")) £ inl (5(e"))
Sinr (e)) 2 nr (5(e”))
(e, ") 2 (5(e"). 5(e”))
S(tst (e')) £ fot (5(¢”))
5(znd (")) 2 snd (3(e”))
case e’ of case 6(e’) of
d ( linl (y) = ey £ |inl(y) = Bldom(s)\{y}(€1)
linr (y') = eg linr (y') = 6|dom (8)\{y’}(€2)
5(new (e’, T) w (8(e),T)
5(te’) = 1(5(e”)
e = e”) £ 5(e) = 5(e")

S(open o ine’

d(close 0 in e close o in 5(e’)
5(e’ then unopen o) = §(e’) then unopen o
5

(e’) then unclose o

24
A
é
£ open 0 in 5(e’)
A
A
(e’ then unclose 0) £
A

)
)
)
)
)
)
)
)

"

8(when o then e’ else e when o then §(e’) else 8(e”)

Lemma 7.1. If Vy € dom(68).x ¢ FV(8(y)), then (5(e’))[x — el =5 U{(x,e)}(e’).
Proof. By induction on e’.

e ¢’ =1y: There are several cases:

— y € dom(5). Then [e/x]5(y) = [e/x]5(y) Temmaid g

— y ¢ dom(d) and x =y. Then [e/x]6(y) = [e/x
— y ¢ dom(d) and x #y. Then [e/x]é(y) = [e/

= y) =8 U{(x,e)}(y).

ly=le/yly=e=25U{(y,e)}(y) =dU{(x,e)}(y).

Xy =y =20U{(x,e)}(y).

e ¢/ = Ay.e’: By our assumptions about variables y ¢ dom(d) and y # x. Hence [e/x]0(A y. e”) =
Ay. [e/xI5(e”) TMETT AY.5 U{(x, e)} (e”) = 5 U{(x, e)} (My. e”).

o e/ =e ey [e/xI5(er e2) = le/x](5(e1) Slea)) = le/xI5(e1) le/x]5(ez) MHET™ (5 U{(x, )} (e1)) (5U
{(x,e)} (e2)) = dU{(x,e)}(ey e2).

o e’ =(): [e/x]o(() =[e/x]() = () =dU{(x,e)}(()).
o e/ =1 [e/xJ5(1) = [e/x]l =1 =8 U{(x, )} (L).
e e’ = inl e”: [e/xI8(inl e”) = [e/x](inl §(e”)) = inl [e/x]d(e”) TET™ inl § U {(x,e)} (") =

dU{(x,e)}(inl e”).
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when o then [e/x]5(e1) else [e/x]d(es)

e/ = inr e”: [e/x]8(inr e”) = [e/x](inr d(e”)) = inr [e/x]6(e”) tnduction 405 U{(x,e)}(e”) =
dU{(x,e)}(inr e”).

e’ = (e1,e0): [e/x]5((er, ) = le/x]((5(e1), 5(e2))) = (le/x]8(er), [e/xI8(es)) T E™ ((5U{(x, )} (e1)), (8U

(
{(x,e)}(e2))) =dU{(x, e)}((e1, e2)).

e/ = fst(e”): [e/x]o(fst e”) = [e/x](fst §(e”)) = fst ([e/x]5(e”)) ™E™ £5t(5 U {(x, e)} (&) =
dU{(x,e)}(fst e”).

e’ = snd(e”): [e/x]5(snd e”) = [e/x](snd §(e”)) = snd ([e/x]5(e”)) "™ E™ snd(5U{(x, e)} (e”)) =
dU{(x,e)}(snd e”).

e’ = case(eg,y.e1,y’.e2): By our assumptions about variables y,y’ ¢ dom(d) and y # x #y’. Hence
le/x]5(case(eo, y-e1,Yy".e2)) = [e/x](case(5(en), y.d(e1),y".5(ez))) = case([e/x]5(e), y.le/x](e1),y.[e/x]5(e2))
SO case(8U{(x, €)} (o), y-8U{(x, €)} (1), y".0U{(x, )} (e2)) = 8U{(x, e)} (case(eo, y.e1,y.e2)).

induction

e’ =new(e”,1): [e/x]d(new(e”, 1)) = [e/x](new(d(e”),T)) = new(le/x]6(e”),T) new(d U

{(x,e)}(e"), 1) = d U{(x, e)} (new(e”,T)).

e = e = ey le/xI5(er = ey) = [e/x](5(er) == Sles)) = le/xI5(er) = [e/x]8(ez) THE (5U

{(x,e)}(e1)) :== (B U{(x, e)} (e2)) = S U{(x,e)} (e1 :=e2).

e’ =opencine”: [e/x]6(open oine”’) = [e/x](open oin d(e”)) = open o in [e/x]5(e”) induction

open o in S U{(x,e)}(e”) =dU{(x,e)} (open o in e”).

e’ =closeoine’”: [e/x]6(close oin e”) = [e/x](close o in §(e”)) = close o in [e/x]d(e”) induction
close o in S U{(x,e)}(e”) =6 U{(x,e)}(close o in e”).

e’ =openedoine’”: [e/x]5(opened oine”) = [e/x](opened o in d(e”)) = opened o in [e/x]|5(e”) induction
opened o in s U{(x,e)}(e”) =8 U{(x, e)} (opened o in e”).

e’ =closed oine”: [e/x]6(closed ocine”) = [e/x](closed o0 in 6(e”)) = closed o in [e/x]6(e”) nduction
closed o in d U{(x,e)}(e”) =dU{(x,e)}(closed o in e”).

e’ = when o then e; else es: [e/x]6(when o then e; else e3) = [e/x](when o then d(e;) else 8(es)) =

tnduction \ hen o then dU{(x,e)}(e1) else U{(x,e)} (es) =
dU{(x,e)} (when o then e; else es).

O

Definition 7.3 (State Well-Formedness). (S, m)> (0) £

A

dom(0) C dom(S)
(V1 € dom(0).(S(1),0, m) € [6(1)]v)

A V1 € dom(0).0(1) = type(S, 1)

Definition 7.4 (Unary relation). We define the following sets

[unit]y £ {((), 8, m)}
Ny £{(n,8,m)[n € N}
(11 x ]y 2{((v1, v2),0,m) [ (v1,0,m) € [T1]v A (v2,0,m) € [12]v}
T+ o]y 2 {(inl(v),0,m)[(v,0,m) € [t;]v}U{(inr (v),0,m)|(v,0,m) € [12]v}

Ve, v,m/.0  J0/AmM <mA

, PC A
1 —— iy = {(Ax'e’e’m) ‘ (v,0',m") € [11]v — (elx —v],0",m") € [1,]EC
(

[ref Ty £ {(1,0,m)]0(1) = T}
[AP]y £ [Alv
Ty 2 {(5,0,m)|dom(Tl") € dom(58) A'¥x € dom(T).(8(x),0, m) € [T(x)]v}
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e VAVS, 0/, m' e S w, 2. 00 J0/AM <mA(S,m')>(0') —
Zl—e,S%e’,S’ —

[tg, =< (e,6,m)
f (Vp.(pol(w) =p) = pc Cp) A
(307.0” 30" A (S, m')>(0") A (e/,0”,m') € [t]E°)
[tg, =Tty

(e [, U [TlE,

7.2 Binary relation

Note: In this section we only define the logical relation for firstorder state,
so that we will only have firstorder observations. The changes needed to
obtain the more general logical relation, that we present in the paper, are

described in
This restriction means we assume that the locations only point to data of firstorder types. We define
firstorder types inductively in the following way

Definition 7.5 (Firstorder types).

. firstorder(A)
- < Funit - T Fnat O ———— FPol
firstorder(unit) firstorder(N) firstorder(AP)
firstorder(t,) firstorder(t) firstorder(ty) firstorder(t)
- FProd - FSum
firstorder(t; X T9) firstorder(t; + 1)

firstorder(t)

- FRef
firstorder(ref T)

Definition 7.6 (Worlds). A world W is a tuple (01,02, 3) where 0; and 05 are state environments and 3
is a partial bijection dom(6;) — dom(0).

For W = (0,0, B), we define the projections W.0; £ 0, W.0, £ 0’ and W.p £ B’

We also define world extension:

WIECW2 (W.0, CW.0,) A(W.0,CW.0,)
N (W'.pCW.B)

Definition 7.7 (Binary State Well-Formedness).
(S1,S2,m) lj>l (W) £
(S1,m)>W.0; A (S2, m) > W.04
A W.A C dom(W.01) x dom(W.05)

A <vu, 1) ew.p, W01 =W.02(1) A )

(S1(1),Sa(1), W, m) € [W.6,(1)]5
Lemma 7.2 (World-extension-ordering). World extension (C) is an ordering
Proof. This is true because C and C on unary worlds are both orderings @ O

Definition 7.8 (Attacker policy). For a policy p and an attacker A = (a,2") we writep CA 2 p C 2/ =
a. Similarly for T = AP we write T C A £ p C A. We also write =’ C A to mean ~' C 27"

Definition 7.9 (Observational equivalence). For observations and values we inductively define observational
equivalence.

V1T, v. w # L (v) —(pol(w) ZA)V —(pol(w’) EA) . VB
v refl T high ——— 7 extend-t
W A W w ARG W Le(v) =5 L (v
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and

pol(w)ZA  pollw)ZA . vy (L) e VLT, vw # Le(v)
R high VIR extend-t v refl
w =y w Lc(v) g (v w g w
Unit Nat Vﬁzf' v Inl
———F—— eqUni ——F eqNa - - eqln
P2 0 nP~ft n inl (v) P inl (V)
vBA v Pyl v P ) L1)ep
- 5 = -~ eqlnr v — - eqPair BA 17 eqRef
inr (v) Pty ine (V1) (v, vo) P2 (v, v5) 1Pl
PZA pC A vB4 Y
BLA eqHigh BA eqLow
P v Pt v

Definition 7.10 (Binary substitutions). A binary substitution vy is a pair (81, 82) of substitutions. When
v = (81, 82), then y; = 61 and ys = 8> and we define dom(y) := dom(d;) N dom(ds3).

Definition 7.11 (Low locks and lock equivalence).
We define the set of locks in 2 visible to an attacker A as > 4 := {0 € Z|pol(o) E A}. We say that two lock
sets ~ and X' are low equivalent for attacker A (X ~4 2/)if 24 =2/ 4.

0,0,W,m)}

n,n,W,m)|n € N}

((vi, v2), (v1, v3), Wom) | (vi, v, Wom) € [0 T5 A (v2, vp, Wom) € [ ]9}

(inl (v),inl (v'), W, m) ’ (v,v',W,m) € H—TJH}} U {(inr (v),inr(v'), W, m) | (v,v/,W,m) € [[Tgﬂ{}}

(YW W' JIW = vm/m/ <m— W,v.(v,v, W m) € [t]§ —
T,pc A , Vi, 2001 DL CloNLmyq iy —
"—Tl E— Tg-ﬂv = (?\x.e77\x.e ,W,m) (e[x»—>v],e’[xHv’],W’,Zl,Zg,m’) c H'TZ‘"JECL) A
<,pc

(Ax.e,W.0;,m) € [T LN ]y A (Ae.e’,W.03,m) € [1) —— To]v
ref 7] £ {(LU, W, m) [W.0,(1) = 7= W.0, (1) A (L,1') € W.B}

(PCA— vV, W,m)e[ATH A }
(p z A — (V, W'elam) € [A—IV/\ (V/,W.GQ,TTL) € [A—IV)

(1>
= 2 2

H—T] X TQ—"\)‘;l

[t + Tﬂ]“\;{

>
—~

>

[AP]4 2 {(v,v:w,mJ\

T1% £ {(y, W, m) |dom(T") € dom(y) AVx € dom(T).(v1(x), y2(x), W,m) € [T(x)]5 }
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Note: Note that we are working with a different, but equivalent definition
in the technical report. Instead of the disjunction “relevant declassification
or continued indistinguishability” presented in the paper, we work with the
equivalent implication “no relevant declassification implies continued indis-
tinguishability” here. Also note that the logical relation below is only for
first-order state. The logical relation for higher-order state can be found in

lsection 91
[l £ T0¢, u{v, v/, W, 2,2/, m) | (v,v',W,m) € [t]3} , where:

Z%A Z’/\VZ},ZQ.ZQZ] /\Z’QZZ/\L A ZZ_>

YW/ m’, Sy, Som/ < mMAW’' IWA (Sy, S5, m') &6 W — (e1, e5) €

€1 g v A €2 g VA
Ve{,S{,Zi,w,eé,Zé,Sé,w’.

ke, S ==e¢], S| A
Csym = (ela 62) Jokeg, So ;fi eé, Sé —
(w %\f}v/ﬁ W'VIICAVIICA) —

IWTWT IWIA (81,85, m) B (W) A
”—T—”}filﬁ é (elaeQuW7 Z,Z’,m) w g‘\//%/“,ﬁ ('U//\ (e{7eéawl/7zaz/7m/) S WTﬂél

e1 ¢V AVel,S1,2, w.

SiFer, S = e, 81— —(pol(w) £ A) A
CrL =4 (e1,e2) M U
EWW"” I W' A (S], Sy, m/) & (W) A
(ef,e2, W, 2,5/, m") € []¢)

es ¢V AVel,Sh, 1L, w.

So b en, Sp == eh ) S5 s —(pol(w) T A) A
Cr =< (e1,€2) A
(BW”.W” W' A (S1,S5,m’) & W A
(er,e5, W”, 5,5/, m") € [7]{)

8 Proofs

8.1 General properties

Lemma 8.1 (Substitution extension unary). Let (5,0, m) € [I'ly and (v,0,m) € [t]y. Then (6 U
{x,v},0,m) € [T, x:1]v.

Proof. We have to show

e dom(I,x: 1) C dom(dU{x,Vv}).

(5,6,m)e[T]v
dom(l',x: 1) = dom(T") U{x} - dom(d) Ux = dom(d U{(x,Vv)})
e Vy € dom(l',x:1).(6 U{(x,v)}(y),0,m) € [T,x:1(y)]v
Let y € dom(T",x : ). There are two cases:
1. y # x. In this case

—y € dom(I"
- Nx:t(y) =T(y)
= (B U{(x,v)N(y) = d(y)
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So we have to show (8(y),0, m) € [T(y)]v which we get from (5,0, m) € [T']y.
2. y = x In this case the goal simplifies to (v,0, m) € [T]y which we already know.

O

Lemma 8.2 (Substitution extension binary). Let (y,W,m) € [T]# and (v,v/,W,m) € [t]4, then
(({(X7V)}UY17{X7\)/} U’Y2)7W7 m) S H—F,X . T—”‘\/?l

Proof. We have to show

e dom(T,x: 1) C dom((vy: U{(x,v)},v2U{(x,v')}).
dom((y1 U{(x,v)},y2 U{(x,v')})) = dom(y1 U{(x,v)}) N dom(y2 U{(x,v)}) = (dom(y1) U{x}) N
(dom(y2) U{x}) = (dom(y1) N dom(ys)) U{x} = dom(y) U{x}. Also dom(T,x : 1) = dom(I") U{x}.
Since we already know (y, W, m) € [Ty, we also know dom(T") C dom(y). Hence also dom(I") U{x} C
dom(y) U{x} which suffices to prove the goal.

° Vy S dom(l",x : T)'(yl U{(Xa V)} (9)71/2 U{(Xa\)/)} (y)awa TTL) € WF,X : Tl(y)qﬂd\;L
Let y € dom(T",x : T). There are two options
— y € dom(I"). In this case (y1 U{(x,v)}(y),v2 U{(x,v')}(y),W,m) € [T,x:t(y)]5 simplifies to
(v1(y),v2(y),W,m) € [T(y)]#. We already know (y, W, m) € [T]5 which 1mphes the goal.
—y = x. In this case (y1 U{(xV)}({y),v2 U{(x,v)}(y),W,m) € [T,x : T(y)]{ simplifies to
(v,v,W,m) € [1]5 which we already know.

O

w;x’

Lemma 8.3 (Policy of updated locations). If = + e, S == e’, S’ , then for all | € dom(S’) we have
S’(1) = S(1) V pol(w) = pol(type(S’, 1))

Proof. By induction on the derivation of ~ F e, S L e , S’. In most cases either S = S’ which makes

the statement trivial or we get the claim by induction. The only interesting cases are the following:

o ENewBeta:
1 ¢ dom(S)

le(v);Z

Sk new(v, 1), S =—==1, SU{l— (v, 1)}

ENewBeta

Let ' € dom(SU{l — (v, T)}). There are two cases:

— 1" € dom(S). In that case SU{l — (v, T)}(l’) = S(1’) because 1 ¢ dom(S), so 1’ #1.
— 1" = 1. In this case pol(type(SU{l — (v, T)},1)) = pol(type(S U{l — (v, T)},1)) = pol(t) =
pol(L¢(v)).

e Eassign:
1 € dom(S) type(S,1) =

T (v) Eassign
(v

SR Lli=v, S =L (), S[L— (v, 7))
Let IV € dom(S[l — (v, T)]). There are two cases:

— V' # 1. In this case I’ € dom(S) and S(1') = S[L — (v, T)](1).

— 1" = 1. In this case pol(type(S[l— (v, T)],1')) =
pol(type(S[L — (v, T)],1)) =1 = pol(l (; v)).

O

Lemma 8.4. For all 7,v,0, m. (v,0,m) € [t]y — V0’ ,m’.0 C 0’ /\m <m— (v,0/,m’) € [t]y and for
all A,v,0,m.(v,0,m) € [Aly > V0/,m'.06C 08 Am'<m— (v,0/,m') € [A] .

Proof. By mutual induction on the structure of A and T.
e unit: Then v=mn and n € N. Hence (n,0’, m’) € [Ny anyway.

e N: Then v= () and ((),0’,m’) € [unit]y anyway.
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e Ty X Ty Then v = (vq,v3) and (v1,0,m) € [t1]y and (v2,0,m) € [T2]y. By induction also
(v1,0’,m’) € [T1]v and (v2,0’, m’) € [T2]y. This suffices to show the goal.

o T; +To: W.lo.g. assume v =1inlv’. Then (v/,;0, m) € [ty ]y. By induction (v/,0’,m’) € [11]v. This
proofs the goal.

T =P Ty: In this case v =2Ax.e. Let 6 J8',m”,v/ s.t. m” <m’ and (v/,0”, m"”) € [11]v. We have
to show ([v'/x]e,0”, m"”) € [12]}. By transitivity (Lemma 6.2)) we have 6 C 0” and m” < m. Since
we already know(v/,8”, m”) € [11]y we get ([v//x]e,8”, m”) € [12]} from (Ax.e,0) € [Ty TP T2 |v.

e ref T': Inthiscasev =1land 8(1) = t’. Because 8’ J 0 also 0'(1) = T/ and hence (1,0’, m’) € [ref T']y.
e Al In this case (v,0,m) € [A]y By induction (v,0’,m’) € [A]y and hence (v,0’,m’) € [Al]y.
O

Lemma 8.5. For all m,T,e,0,pc. (e,6,m) € [7]}° — V0, m/,pc’.0 C 8’ Am/ < mApc/ C pc —
(e,0’,m") € [ﬂgc/.

Proof. By induction on m. There are two cases:
1. (e,0,m) € (T]E; It suffices to show (e,0’,m’) € fﬂEZ/. We get e ¢ V from (e,0,m) € fﬂg;
So let S,0”, m” such that
e 0”0
e (S,m")>0"
° m// < m/
and e’,S’, w, X, L’ such that
e e X S>¢e S wZxX
By transitivity 6 J 6 (Lemma 6.2)), and m” < m.
Hence by (e, 0, m) € [T]‘E";
e (Vp.pollw) =p — pc Cp)
and there is a 0" such that

° 6/// :' e//

° (S/7ml/)[>e///

° (e/’e///,m//) e |'T'|IEC
It suffices to show

o Vp.(pol{w =p)) — pc’ C p. Let p be a policy and pol(w) = p. Then pc C p. We also know
pc’ C pc. We get pc’ C p by transitivity (Lemma 4.1]).

e 0”7 30”. We already know that.

e (S'm”)>0". We already know that.

e (e/,0”, m") e [T}EC,. We get this by induction.

2. (e,0,m) € [T|g;. In that case (e,0,m) € [T]v. We get (e,0’,m') € [T]vy byw The goal
follows directly from the definition of [T]F .

O
Lemma 8.6 (Unary Semantic subtyping). [5]
1. VA,A". A <A’ — [Aly C [A']v
2. VT, 7.

(a) t<tt/ = [ty C [ty
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(b) T<:t' — Vpc. fﬂgc C [ EC
Proof. By mutual induction on A <: A’ and T <: T’.

1. e sub-ref. In this case A =ref 1o = A’. Hence [A]y = [A’]y and we get the claim by reflexivity.
e sub-prod In this case

- A =1 X1
- Al=11xT1
- T < Ty
- T <7

Let ((vo,v{),0,m) € [tg X T§]v. In this case
— (vo,0,m) € [19]v
— (vy,0,m) € [t{]v.

By induction also
- (vo,0,m) € [11]v
- (v,0,m) € [t ]v.

Hence (vg,v},0,m) € [t1 X T |v.

e sub-sum: In this case A = ref tTa = A’. Hence [A]ly = [A']y and we get the claim by
reflexivity.

e sub-prod In this case
- A=10+T)
- Al=T+1]
- T <:Ty
- T <
Let (v,0,m) € [t9 X T)|v. W.lo.g. assume v =1inl v’. In this case
- (v,0,m) € [t]v
By induction also
- (v,0,m) e tulv
Hence (inl v/,0,m) € [ty + 11 ]v.
e sub-arrow In this case
- A=1 Ly T1
- Al=n1 ELp! T1
- T <:To
- T <7y
-p'Cyp
- rcy
Let (Ax. e,0,m) € [Tg =p T1]v We need to show (Ax. e, 0, m) € [1) =Ly T1]v. So let 8/, v,m’
such that
-0’36
-—m'<m
- (v,0',m") € [t{]v
Then by induction
- (v,0’,m’) € [to]v
Therefore
— (v/xle,0’,m') € [11]}
By induction
— (v/xle,0’,m’) € [t]]}
We get ([v/x]le,0’,m’) € [’tﬂgl by |Lemma 8.5
e sub-unit In this case A = unit = A’ Hence [A]y = [A']y and we get the claim by reflexivity.
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e sub-nat In this case A =N = A’ Hence [A]y = [A']y and we get the claim by reflexivity.

2. (a) The only applicable rule is sub-policy. In this case

o T=AP

o T/ =BV

epLyp’

e A<:B

Let (v,0,m) € [AP]y. Then
° (V,e,m) S (A}v
By induction therefore
e (v,6,m) € [Bly
This directly gives us (v,0, m) € [BP ]y.
(b) The only applicable rule is sub-policy. In this case

e T=AP

e T =BP

epLyp’

e A< B

To show [AP]RS C [BP']EC we have to show ¥m, e, 0.(e,0, m) € [AP]E¢ — (e,0,m) € [BP']EC.
We do this by induction on m. So let (e,0,m) € [T|E. There are two cases:

e (e,06,m) € [AP]}S. In this case e is a value v and (v,0,m) € [AP]y. Then also (v,0, m) €
[Aly. By induction (v,0,m) € [B]y. This gives us (v,0,m) € [BP ]y which implies the
goal.

e (e,0,m) € fAP]EE. It suffices to show (e, 0, m) € [Bp/]gfi. By assumption e is not a value.
So let S,0’, m’ such that

-0’36,
- (§,m") >0,
-—m/'<m
Also let e/,S’, w, X, L’ such that
—e X S¢S w,X
Then
— Vq.pol{w) =q = pcE q
And there is a 8” such that
_ e// :l e/
— (S, m')>0"
— (e’,0”,m') € {AP—PE)C
It suffices to show
— Vqg.pol(w) = q — pc C q. We already know that.
— 0”7 30’. We already know that.
— (§,m')>0". We already know that.

— (e’,0”,m’) € [BP"]E°. We get this from the induction hypothesis from the inner induc-
tion.

O

8.2 Fundamental lemma for the unary relation

Lemma 8.7.
If (e,0,m) € WTﬂ? and pc C pol(o), then (e then unopen 0,0, m) € [T] gc.

Proof. By induction on m. There are two cases:

1. (e,0,m) € [T]EE In this case it suffices to show (opened o in e, 0, m) € [T]EE It is clear that
opened o in e is not a value. So let S,0’, m’ such that
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e 036,
e (S,m')>0" and

e m <m.
Also let ep,S’, w, X, L’ such that
e opened o ine L, S >~ ep,S,w, "

By assumption e is not a value. Hence the reduction must have happened with Eopened. Hence we
know there is a e’ such that

e e, XU{o},S=¢',S, w, X" and
e eg =opened o in e’
Because (e,0,m) € [T]EE therefore
e Vp.pol(w)=p—=>pcCp
and there is a 0” such that
¢ 0”30,
o (S, m') 0",
e (e/,0”,m') € [T]}".

It suffices to show

Vp.pol(w) =p — pc C p. We already know that.
0” 3 0’. We already know that
(S, m’)>0". We already know that.

(opened o in e’,0”, m’) € [t]%°. We get this by induction.

. (e,0,m) € [T]§ . In this case (e,0,m) € [T]y. So there is a value v such that v = e. It suffices to
show (opened o in v,0,m) € [T]E; It is clear that opened o in e is not a value. So let S,0’,m’
such that

e 010,
o (S,m/)50 and

e m' < m.
Also let eg,S’, w, X, L’ such that
e opened o in v,L,S > ep,S’, w, "
Because v is a value, the reduction must have happened with EopenedBeta. Hence we know that

e S'=S,
e eg =V,
e w =unopen(o) and
e X' =3,

So the reduction is really
e opened o inv,X, S > v, S, unopen(o), L.

It suffices to show

pc C pol(o). This is one of our assumptions.

e 0/ 0J0’. We have this by
(S,m’)>6’. We already know that.

(v,0’,m’) € [T]E°. We get this by
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Lemma 8.8.
If (e,0,m) € [t]# and pc C pol(o), then (open o in e, 0, m) € [T] EC.

Proof. By induction on m. It suffices to show (open o in e,0, m) € fﬂgz It is clear that open o in e is
not a value. So let S,0’, m’ such that

e 0/10,
e (S,m')>0’ and
e m < m.
Also let eg,S’, w, X, L’ such that
eopenoine,X,S>eg,S w, X’
The reduction must have happened with Eopen. Hence we know
e S’ =8,
e ¢g =opened o in e,
e Y =% and
e w = open(o).
So the reduction is really
e openoine,X, S > opened o in e, S,open(o), X.
It suffices to show
e pc C pol(o). We already know that.
e 0/ J0’. We already know that

e (S,m')>0’'. We already know that.

e (opened o in e, 0’,m’) € [T|F°. We get (e,0’,m’) € [T]¥° by The goal follows by
Lemma 8.7

O
Lemma 8.9. If (e,0,m) € [1,]5" and (es,0, m) € [12]E, then ((e1,e2),0,m) € [(T; x T2)P]E".

Proof. By induction on m. There are several cases:

1. (e1,0,m) € [Tl]’é;. It suffices to show ((e1,ez2),0,m) € [(T1 x Tg)pﬂzg. By assumption e; is not a
value. Hence (e, e3) is not a value either. So let S,0’, m’ such that

e 0'30,
e (S,m')>0’" and

e m' < m.
Also let eg,S’, w, X, L’ such that
° (61,62),2,5 - GB,S/,CU,ZI.

By assumption e; is not a value. Hence the reduction must have happened with EPairl. Hence we
know there is a e] such that

e e, L S>el,S w, X and

e eg = (e, e2).
Because (e1,0, m) € le]E'; therefore
e Vp.pollw)=p —=pcCp

and there is a 0” such that
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e 0”2 6/7
e (S m')>0",
e (ef,0”,m') e [1]}".
It suffices to show

e Vp.pol(w) =p — pc C p. We already know that.
e 0”7 3J0’. We already know that
e (S' m')>0". We already know that.

o ((ef,e2),0”,m') € [(11 x T2)P]%. By we have 0” 3 0. Hence we get (e, 0”,m’) €
[T2]8 by . The claim follows by induction.

2. (e1,0,m) € [T1]g, - In this case there is a value v; such that e; = v; and (v1,0, m) € [11]y. There
are two further cases:
(a) (e2,0,m) € [TQ—IEZ. It suffices to show ((vi,e2),0,m) € [(T1 x Tg)p]Eé. By assumption es is not
a value. Hence (v1, e3) is not a value either. So let S,0’, m’ such that
e 0/0,
e (S,m')>0" and
e m <m.
Also let eg,S’, w, L, X’ such that
o (v1,€2),X,S>ep, S w, X’

By assumption v, is a value and es is not. Hence the reduction must have happened with EPairr.
Hence we know there is a e} such that

e e, X S>es S w X and

) eB = (vl,eé).
Because (e3,0,m) € f’rﬂgg

o Vp.pollw)=p—pcCp
and there is a 8" such that

e 0”30,

e (S’ m')>0",

e (e5,0”,m') € [12]F".

It suffices to show

Vp.pol(w) =p — pc C p. We already know that.

0" 3 0’. We already know that

(S’,m')>0". We already know that.

((vi,€5),08”,m) € [(T1 xT2)P]E". Bywe have 8” 3 0. Hence we get (v1,0”,m’) €

[11]8€ by [Lemma 8.5[. The claim follows by induction.

(b) e3,0,m) € [Tﬂgi. Then there is a value vo such that es = vy and (v, 0, m) € [T2]v. It suffices to
show ((v1,Vv2),0,m) € [(t1 xT2)P]E; . For that it suffices to show ((vi,v2),0,m) € [(T1 xT2)P]v.
By definition it suffices to show ((v1,v2),0, m) € [11 X T2|v. To show this we need to show
e (vi,0,m) € [11]v
o (vo,0,m) € [T2]v.
We know both of this already.

O

Lemma 8.10. If (e1,0,m) € [(1; —=% 1,)97 and (e5,0,m) € [1,]12 and pc C p, then (e1 e2,0,m) €
[tolp -
Proof. By induction on m. There are several cases:

1. (e1,6,m) € [(T1 EmgP Tg)q]gg. It suffices to show (e; e3,0, m) € [TQ]E;. Clearly e; ey is not a value.

So let S,0’, m’ such that
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e 036,
e (S,m’')>0" and

e m < m.
Also let eg,S’, w, X, L’ such that
L1 6272,5 - 6[375/7('072/'

By assumption e; is not a value. Hence the reduction must have happened with EAppl. Hence we
know there is a e] such that

e e, L S>el,S w, X and

® eg =ej e

Z‘n!
Because (eq,0,m) € [(t; =" Tg)qﬁgi we know

e Vp.pollw)=p—=pcCp
and there is a 0” such that

e 0710,

e (S, m')>0",

o (e1,0”,m/) € [(m " y)9]pc.
It suffices to show

e Vp.pol(w) =p — pc C p. We already know that.
e 07 J0’. We already know that
e (S'm')>0". We already know that.

e (e e2,0”,m') € [12]2°. By|Lemma 6.2 we have 6” 3 6. Hence we get (e2,0”, m’) € [11]E° by
[Cemma 8.5]. The claim follows by induction.

Zm) . .
. (e1,0,m) € [(1y meP Tg)ﬂ‘éi. In this case there is a value v; such that e; = v; and (v{,0, m) €

m, . T,
[(Ty meP T2)9]y. In this case (v1,0,m) € [1q meP T]v. Hence v; has the form Ax.e. There are two

further cases:
(a) (e2,0,m) € [’cl]E;. It suffices to show ((Ax.e) e3,0,m) € [TQ—IIE)TS. Clearly (Ax.e) ey is not a

value. So let S,0’, m’ such that
e 0’360,
e (S, m')>0’ and
e m/ < m.

Also let eg,S’, w, X, L’ such that
e (Ax.e) ez, X, S > ep,S" w,L’.

By assumption es is not a value. Hence the reduction must have happened with EAppr. Hence
we know there is a e} such that

e e, X S=e) S w X and

o eg = (Ax.e) ej.
Because (e3,0,m) € [T; E;

e Vp.pol(w)=p—=>pcCp
and there is a 8” such that

e 07160,

e (S’ m')>0",

e (5,07, m') € [11]F".
It suffices to show

e Vp.pol(w) =p — pc C p. We already know that.
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e 0”7 J0’. We already know that
e (S m')>0". We already know that.
e ((Ax.e)es,0”,m') € [12]2°. By[Lemma 6.2 we have 6” J 0. Hence we get ((Ax.e),0”, m’) €
[(T1 EmgP T2)91%¢ by [Lemma 8.5. The claim follows by induction.
(b) (e2,0,m) € f’rl]Ei. Then there is a value vo such that e; = vy and (v2,0, m) € [11]v. It suffices

to show ((Ax.e) v5,0,m) € [TQ]EE. It is clear that (Ax.e) vy is not a value. So let S,0’, m’ such
that

e 0/10,
e (S,m')>0’ and
e m/ < m.
Also let eg,S’, w, L, X" such that
o (Ax.e) vo,L,S > ep,S" w, X"

By assumption v, is a value. Hence the reduction must have happened with EAppBeta. There-
fore

o eg = [vy/x]e

e S’ =S
e Y =%
e (LW —=E¢€

So the reduction is really
e (Ax.e) vy, X S = [va/x]e, S, €, X.
It suffices to show

e Vp.(pol(e) = p) — pc C p. pol(e) is undefined, so there is no p such that pol(e) = p. So
there is nothing to show.

e 0/ 3 0’. We get this by
e (S,m')>0. We already know this.

o ([vo/xle,0’,m’) € [12]E°. Because pc C p, it suffices to show ([va/x]e,8’,m’) € [12]E by

Lemma 8.5 By assumption (Ax.e,0, m) € [(T; EmgP T2)%]v. Hence we get the goal if we can
show

— 0’ 30. We already know this.
— m’ < m. We already know this.

— (v5,0",m") € [T1]y. We get this by

Lemma 8.11. If (e,0, m) € [(1; X Tg)ﬂgc, then (fst (e),0,m) € [Tl]gc.

Proof. By induction on m. It suffices to show (fst(e),0, m) € f’tl]gg. It is clear that fst(e) is not a value.
So let S,0’, m’ such that

e 0/ 10,
e (S,m')>0" and
e m < m.
Also let eg,S’, w, L, X’ such that
o fst(e),X,S > ep, S w, X"
There are two cases:

1. (e,0,m) € [(T1 X TQ)pTE;. In this case e is not a value. Hence the reduction must have happened
with EFst. Hence we know there is a e’ such that

e e X S>¢e',S w, X and
o eg = fst(e’).
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Because (e,0, m) € [(t1 X Tg)p]EZ,
e Vp.pollw)=p—pcCp
and there is a 0” such that
¢ 0”20,
o (S, m")>0",
e (e/,0”,m) € [(11 x T2)P]E".

It suffices to show

Vp.pol(w) =p — pc C p. We already know that.
e 0" J0’. We already know that

(S, m’')>0". We already know that.

(fst(e’),0”, m’) € [T]E°. We get this by induction.

2. (e,0,m) € [(T1 x T2)P];,. In this case (e,0,m) € [(T1 X T2)P]v. So there is a value v such that v =e
and (v,0, m) € [11 X To]y. Hence v = (v1,v2) and (v1,0, m) € [t1]v. Because (vi,vs) is a value, the
reduction must have happened with EFstBeta. Hence we know that

e S'=5§,
® € =V,
e w=-¢and
o Y/ =3,
So the reduction is really
e fst(vy,v2),X,S>=v,S,¢e, L.

It suffices to show

Vp.pol(e) =p — pc C pol(o). There is no such p so there is nothing to show.

e 0/ J0’. We have this by
e (S,m’')>0’. We already know that.

(v1,08”,m’) € [11]%°. It suffices to show (v1,0’,m’) € [11]v. We get this by [Lemma 8.4

Lemma 8.12. If (e,0,m) € [(7; x T2)P 18, then (snd (e),0,m) € [12]5".

Proof. Analogous to the proof of O
Lemma 8.13. If (e,0, m) € [1,]£, then V1o.(inl (€),0,m) € [(T; +T2)P]E.

Proof. By induction on m. There are two cases:

1. (e,0,m) € [Tﬂgz. In this case it suffices to show (inl e, 0,m) € [(1; —}—Tg)p]gz. It is clear that fst(e)
is not a value. So let S,0’, m’ such that

e 036,
e (S,m')>0’ and

e m' <m.
Also let eg,S’, w, X, L’ such that
e inle X S>ep, S w2
The reduction must have happened with EInl. Hence we know there is a e’ such that

e e X S=¢e',S w, X and

e eg =inle’.
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Because (e,0,m) € [1; E;,

o Vp.pollw)=p —>pcCp
and there is a 0" such that

e 0”30,

o (S, m')>0",

o (e/,0”,m') € [t1]F".

It suffices to show

Vp.pol(w) =p — pc C p. We already know that.

0” 13 0’. We already know that

(S, m’')>0". We already know that.

(inl e’,0”,m’) € [(11 + T2)P|E°. We get this by induction.

2. (e,0,m) € [T1]g; . In this case e is a value v and (v,0,m) € [11]v. It suffices to show (inlv,0,m) €
[(T1+T2)P]v. For this is suffices to show (inlv,0, m) € [t; +T2|v. We get this by definition because
(V, 9, m) S |_T1~|\7.

O
Lemma 8.14. If (e,0,m) € [Tﬂgc, then Vt,.(inr (e),0, m) € [(1y +T2)V]EC.
Proof. Analogous to the proof of O
Lemma 8.15. If

o (e.0,m) € [(r1 + )" Tg",

e VO, M0’ J0AM <m— W.(v,0/,m) € [1,]v — ([v/xle;,0’,m') € [t]E"" and

e V0", M0’ J0AM <m—W.(v,0/,m) €[]y — (v/yles, 8/, m’) € []2°7,
then (case e of |inl (x) = ey |inr(y) = e3,0,m) € [T]EC.

Proof. By induction on m. It suffices to show (case(e,x.e1,y.e2),0, m) € f’ﬂE; . It is clear that case(e, x.e1,y.e2)
is not a value. So let S,0’, m’ such that

e 0/ 10,

e (S,m')>0’ and

e m’ <m.
Also let eg,S’, w, X, X’ such that

e case(e,x.e;,y.e2),X,S > ep, S w, X"
There are two cases:

1. (e,0,m) € [(t1 + Tg)ﬂ‘é;. In this case e is not a value. Hence the reduction must have happened
with ECase. Hence we know there is a e’ such that

e e X S=¢',S w, X and

e eg =case(e’,x.e1,y.eq).
Because (e,0,m) € [(1; +Tz)p]E;7
e Vp.pol(w)=p—=>pcCp
and there is a 8" such that
e 0710,

e (S, m")>0",
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e (e/,07,m') € [(ty JrTg)pﬂzc.
It suffices to show

e Vp.pol(w) =p — pc C p. We already know that.
e 0”7 3J0’. We already know that
e (S'm')>0". We already know that.
e (case(e’,x.e1,y.e2),0”, m’) € [T]E°. We get this by induction, if we can show
— (e/,8”,m’) € [(11 + T2)P]E°. We already know this.
— VO, m”.8" 38" Am” < m' = W.(v,0”,m") € [ti]v = (Iv/xle;, 0", m") € [t]BLP,
Let 8”7 3 8” and m” < m’. Then by transitivity we have 0"/ J 0 and

m” < m. Hence we get W.(v,0” ,m”) € 1]y — (v/x]er, 0", m”) € [t]?"P from our
assumption.

— V0 m"”.0” 130" Am” <m — Y.(v,0” m") € [ta]y — (v/yles,0”, m") € [T]R°P.
Let 8”7 3 0” and m” < m’. Then by transitivity we have 6”7 O 0 and
m” < m. Hence we get W.(v,0”,m"”) € [ta]y — ([v/yle2,0”,m"”) € [t]2"P from our
assumption.

2. (e,0,m) € [(t1 + Tg)p]gi. In this case (e,0,m) € [(T1 + T2)P]v. So there is a value v such that
v=-eand (v,0, m) € [1T; + T2]y. Hence there is a value v’ such that v =1inl v/ or v = inr v/ and
(v',0,m) € [t1]v or (v/,0, m) € [12]v, respectively. We do case analysis

(a) e=1inl v’ and (v/,0,m) € [11]v. The reduction must have happened with ECasel. Hence we
know that
e S'=5,
o eg = [v//xleq,
e w=c¢€ and
e Y =1
So the reduction is really
e case(inl v/, x.ej,y.€2), L, S = [v'/xley, S, €, L.
It suffices to show

e Yp.pol(e) =p — pc C pol(o). There is no such p so there is nothing to show.

e 0/ 3 0’. We have this by
e (S,m')>0’. We already know that.

o (V/xler,0’,m’) € [11]E°. Because 8’ 16, m’ < m and (v/,0’,m’) € [t]v by
we get this by assumption.

(b) e=1inr v’ and (v/,0, m) € [12]v. The reduction must have happened with ECaser. Hence we
know that

e S'=5,
e ep = [v//x]eg,
e w=c¢€ and
oY =1,
So the reduction is really
e case(inr v/ x.ej,y.e2), L, S > [v//x]es, S, €, Z.
It suffices to show
e Yp.pol(e) =p — pc C pol(o). There is no such p so there is nothing to show.

e 0/ J0’. We have this by
e (S,m')>0’. We already know that.

o (V' /xlep,0’,m’) € [T|E°. Because 8’ J 0, m’ < m and (v/,0’,m’) € [12]v by [Lemma 8.4
we get this by assumption.

O
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Lemma 8.16. If (e,0,m) € [AP]E", pc C q and A <: B, then (new (e, B9),0,m) € [(ref B9)"]2".

Proof. By induction on m. It suffices to show (new(e, B4),0, m) € [(ref B9 )T]EZ . It is clear that new(e, B9)
is not a value. So let S,0’, m’ such that

e 0/10,

e (S,m')>0" and

e m < m.
Also let eg,S’, w, X, L’ such that

o new(e,B9),Z,S > ep,S" w, X"
There are two cases:

1. (e,0,m) € [AP]E;. In this case e is not a value. Hence the reduction must have happened with
ENew. Hence we know there is a e’ such that

e e X S>¢e' S w, X and

e ez =mnew(e’,B9).
Because (e,0,m) € [AP]E;,

e Vppollw)=p—=>pcCp
and there is a 0 such that

° 6// g e/’

e (S, m')>0",

e (e/,0”,m’') € [AP]EC.

It suffices to show

Vp.pol(w) =p — pc C p. We already know that.

e 0 J6’. We already know that

(S, m’)>0". We already know that.

(new(e’,B9),0”, m’) € [(ref BY)"|E°. We get this by induction.

2. (e,0,m) € [AP|ES. In this case (e,0,m) € [AP]y. So there is a value v such that v = e and
(v,0, m) € [A]y. Because v is a value, the reduction must have happened with ENewBeta. Hence
we know that there is an 1 such that

e 1 ¢ dom(S)
e §'=SU{l— (v,B9)},
® €p :1,

e w=1gq(v) and
oY =13,

So the reduction is really
e new(v,B9), L, S~ 1LSU{l— (v,B9)},1ga(v), Z.
It suffices to show

e pc C gq. We have this by assumption.
e 0/ U{(1,B9)} 3 0’. We have this because 8’ U{(1,B9)} is a superset of 0.
e (SU{l— (v, BN}, m')>0"U{(L,B9)}. We have to show

— dom(0’ U{(1,B9)}) C dom(SU{l — (v,B9)}).

dom(0’ U{(1,B9)}) = dom(0') U{l} (S?mgl)bel dom(S) U{l} = dom(SU{l — (v,B9)})
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— VU € dom(0'U{(1,BN}.(SU{l — (v, BI)}(1'),0' U{(1,BN)},m’) € [6/ U{(1,B9)}(1')]v. Let
' € dom(6’ U{(1,B9)}). There are two cases
(a) ' # 1. In this case ' € dom(0’'). Because (S, m’) >0’, this gives us (S(1'),0’,m’) €
[6/(1")]v. Because 1’ # 1, this is equivalent to (S U{l— (v,B9)}(1"),0’,m’) € [6’' U
{(L,B9)}(1")]v. We get the goal by [Lemma 8.4]
(b) UV =1. In this case we have to show (v,0’ U{(1,B9)}, m’) € [B9]y. It suffices to show
(v,0’ U{(1,B9)}, m’) € [B]y. By[Lemma 8.6|it suffices to show (v,0’ U{(l,B9)},m’) €
[Alv. We get this by [Lemma 8.4]
— VU € dom(6’ U{(1,B9)}).0" U{(1,BN)} (') = type(SU{l — (v,B9)},1’). Let " € dom(6’ U
{(1,B9)}). There are two cases
(a) U/ # 1. In this case L € dom(0’). By (S, m)>0’ this gives us 8’(l') = type(S,1’). Because
1’ £ 1 this is equivalent to the goal.
(b) U/ =1. In this case we have to show that B9 = B9. This is clearly the case.
(1,6 U{(l,B9)}, m’) € [(ref B9)"]E". It suffices to show (1,0’ U{(1,B9)},m’) € [ref B9]y. It
suffices to show that 6/ U{(1,B9)} (1) = B9. This is clearly the case.

O

Lemma 8.17. If (e,0,m) € [(ref 7)P ]2 and © <: T/, then (le,0,m) € [t/]".

Proof. By induction on m. It suffices to show (le,0, m) € [T/]E‘;. It is clear that !e is not a value. So let
S,07, m’ such that

e 0/30,

e (S,m)>0" and

em <m.

Also let eg,S’, w, X, L’ such that

ole X S>ep, S w, L.

There are two cases:

1. (e,0,m) € [(ref T)ﬂgg. Then e is not a value and the reduction must have happened with EDeref.

Hence we know there is a e’ such that

e, X, S=¢e',S" w,x and

eg =le’.

Because (e, 0, m) € [(ref T)WEE,

Vp.pol(w) =p = pcCp

and there is a 0" such that

0”16’
(8, m')>0",

(e/,8”,m’) € [(ref T)P]E".

It suffices to show

Vp.pol(w) =p — pc C p. We already know that.
0” 3 0’. We already know that

(S, m')>0". We already know that.

(le’,0”,m’) € [T']1E°. We get this by induction.

2. (e,0,m) € [(ref T)ﬂgi. In this case (e, 0, m) € [(ref T)P]v. So there is a value v such that v = e and
(v,0,m) € [ref T|y. In particular this means that there is a location 1 such that v =1 and 6(1) = .
Hence the reduction must have happened with EDerefBeta. This means that there there are v/ and
g such that
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L (W) €S
s=s,

o eg =V,

e w=c¢€and
o Y =%,
So the reduction is really
e ILX S>>V S e L.
It suffices to show

e Vp.pol(e) =p — pc C p. As the policy of € is undefined, no such policy exists. Hence there is
nothing to show.

e 0/ J0’. We get this by [Lemma 6.2]

e (S,m')>0’. We already know this.

o (v,0,m’) € [T]E".
From (S, m’) >0’ we get (S(1),0’,m’) € [6/(1)]v. Because 8’ J 0 we have 0’'(1) = t. Because
L— (v/,q) € S we have S(1) =V’. Hence (v/,0’,m’) € 1. We get the claim by [Lemma 8.6}

O

Lemma 8.18. If (e;,0,m) € Hrefr’)p]gc, (e2,0,m) € [T]gc, T(X) <: v and pc C T/, then (e; :=
e2,0,m) € [unitL]Ec.

Proof. By induction on m. It suffices to show (e; := ez, 0, m) € [unitﬂgg. It is clear that e; := es is not
a value. So let S,0’, m’ such that

e 0/J0,
e (S,m')>0" and
em <m.
Also let eg,S’, w, X, L’ such that
o e :=ey, X, S>ep, S w, L.
There are two cases:

1. (e1,0,m) € [(ref T’)ﬂgfi. In this case e; is not a value. Hence the reduction must have happened
with Eassignl. Hence we know there is a e such that

e e, S>el,S w, X and
® eg =e| =eo.
Because (e1,0, m) € [(ref T’)p]‘é; we know
e Vp.pollw)=p—=pcCp
and there is a 0” such that
0”30,
o (S',m/)>0",
o (e1,0”,m') € [(ref T/)P]E".
It suffices to show

e Vp.pol(w) =p — pc C p. We already know that.
e 0”7 1J0’. We already know that
e (S',m')>0". We already know that.
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o (e] :=e,0”,m) € [unit]E°. By we have 8” J 0. Hence we get (ep,0”, m’) €

TR by . The claim follows by induction.

2. (e1,0,m) € [(ref T’)p]‘éi. In this case there is a value v; such that e; = v and (v1,0,m) €
[(ref T/)P]y. In this case (v1,0,m) € [ref T/]y. Hence v; has the form 1 and 6(1) = t’. There are
two further cases:

(a) (e2,0,m) € fﬂE‘; By assumption es is not a value. Hence the reduction must have happened
with Eassignr. Hence we know there is a e}, such that
e e, X S>e) S w X and
o eg =li=ej.
Because (e3,0, m) € [T]TE’E
e Vp.pol(w)=p—=>pcCp
and there is a 8" such that
« 0”20
e (S m')>0",
o (e5,0”,m') e [T]R°.
It suffices to show
e Vp.pol(w) =p — pc C p. We already know that.
e 0”7 3J0’. We already know that
e (S, m')>0". We already know that.
o (L:=e),0”,m') € [unit:]2°. By [Lemma 6.2 we have 6” 3 0. Hence we get (1,8”,m’) €
[(ref T/)P]E by [Lemma 8.5(. The claim follows by induction.

(b) (e2,0,m) € [T|f. Then there is a value vy such that ey = vy and (v2,0,m) € [t]y. By
assumption vy is a value. Hence the reduction must have happened with Eassign. Therefore

e 1€ dom(S)

° ep =)

o S =S[l— (vo,7")]
e Y =3

w = Lr” (VQ)
o T =type(S,1)
So the reduction is really
o l:= Va2, Z7 S~ ()7 S[l — (v27T//H71T”(V)7 L
We know 6/ 3 0 and 6(1) = 1’. Hence also 0'(1) = 1’. It suffices to show
e pc C pol(t”). We know (S,m’)>0’. In particular this means that 1 € dom(6’). Because
0’(1) = 1/, this means v’ = 0’(1) = type(S,1) = 1”. By assumption also pc C 1’. Hence
pc C pol(t”).
e 0/ J0'. We get this by
e (S[l— (va,T")],m')>0’. We have to show
— dom(0’) C dom(S[l — (vo,T")]).

(S,m’)>0’
dom(0’) C  dom(S) C dom(S[l— (va,T")])

— VU € dom(0').(S[l — (vo,T")I(V),0/,m’) € [0/(1')]v. Let I’ € dom(0’). There are two

cases

i. U # 1. Because (S, m’) >0, this gives us (S(1'),0’,m’) € [6/(1")]v. Because I’ # 1,
this is equivalent to (S[1 — (vo,T”)](1'),08’,m') € [0/(1)]v.

ii. 1’ = 1. In this case we have to show (v,8’,m’) € [t']y. By it suffices
to show (v,0’,m’) € [T(X)]v. T must have the form B for some type B and policy
r. We already know (vy,0,m) € [T]y. Hence (v2,0,m) € [B]y. (v,0,m) € [B" ]y
follows directly from the definition. We get the goal by
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— V1l € dom(0').0'(l) = type(SI[l — (vo,T”)],1'). By assumption T = type(S,1). Hence
type(S[L — (v2, @), 1) = type(S[L — (v2, type(S, 1)1, 1) = type(S, ')
Hence the goal follows from (S, m’)>0’.
e ((),0’,m') € [unitt]P°. It suffices to show ((),0’,m’) € [unit]y. This is trivially true.
O
Lerslcma 8.19. If (e1,0,m) € [T] Ecup(ﬂ(”) and (e, 0, m) € [T] gcupo“”], then (when o then e; else 5,8, m) €
[Tle

Proof. By induction on m. It suffices to show (when o then e; else ey, 0, m) € [pdfzﬁ. It is clear that
when o then e; else es is not a value.
So let S,0’, m’ such that

e 030,
e (Sm')>0o/,
em <m
and eg,S’, w, L, X’ such that
e when o then e; else ep,X,S > ep, S, w, X’
We do case analysis on the derivation of the reduction:

1. The derivation happened with EWhenOpen. In this case e; is not a value and there is an ef such
that
e o€l
e e, L, S>e,S w X,

e ez =when o then e] else ey
So the reduction is really

e when o then e; else ey, L, S > when o then e] else ez, S’, w, L.
Because (e1,0,m) € "T-IECI_Ipol(o‘) and because e; is not a value we must have (e1,0, m) € [ﬂg}zupol(c)-
Hence we have

e Vp.(pol(w) =p) — pcUpol(o) Cp.
and there is a 8" such that

° 6// g 617

e (S m')>0" and

° (e{,O”,m’) c (T-‘Ecupol(c).
It suffices to show

e Vp.(pol(w) =p) — pc C p. Let p such that pol(w) = p. In this case we know pc Upol(o) C p.

We get pe C p by [Commma 13

e 0”7 3J0’. We already know that.

e (S' m')>0". We already know that.

e (when o then e else e, 0”,m’) € [T]E°. By induction it suffices to show

— (e1,0”,m’) € [ﬂgcuvo”c). We already know this.

— (e2,0”,m') € [T]P"P°H°). By transitivity (Lemma 6.2) we have 8” 3 8. We get the goal

by [Lemma 8.5(from (e3, 0, m) € [ﬂEC"'pOI(U).

2. The derivation happened with EWhenClosed. In this case ey is not a value and there is an e} such
that
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e 0¢ L,
e ey, L. S>e) S w, I,
e eg =when o then e; else e}

So the reduction is really

e when o then e; else ey, L, S > when o then e; else e}, S’, w, L.

pclpol(o)

Because (ez,0,m) € [T] ECUPOL(U) and because e is not a value we must have (e, 0, m) € [T|¢;

Hence we have

e Vp.(pol(w) =p) = pcUpol(o) C p.
and there is a 8" such that

e 0/ 10,

e (S',m')>0" and

o (e5,0”,m') € [x]peHPOL),
It suffices to show

o Vp.(pol(w) =p) — pc C p. Let p such that pol(w) = p. In this case we know pc Upol(o) C p.
We get pc T p by [Cemma 4.T3]
e 0”7 3J0’. We already know that.
e (S' m')>0". We already know that.
e (when o then e; else e},0”,m’) € [T]E°. By induction it suffices to show
— (e1,0”,m') € fﬂECUpOl(U). By transitivity we have 0”7 3 0. We get the goal
bnyrom (e1,8,m) € [T}ECUPOL[U).

— (e4,0”,m’') € fﬂgcupouc]. We already know this.

3. The derivation happened with EWhenOpenBeta. In this case e; is a value v; and

LIRS
e ep =V,
¢ S'=5§,
e X =%,
e W =¢€

So the reduction is really
e when o then v; else e, Z,S = v1,S,¢, 2.
It suffices to show

e Vp.(pol(e) = p) — pc C p. There is no p such that pol(e) = p. So the statement is trivially
true.

e 0/ J0’. We get this by
e (S,m')>0’. We already know that.

e (vi,0,m') € [T]F°. We already know (v1,0,m) € [T]Ecupouc]. Bypc C pclipol(o).
Hence we get the goal by

4. The derivation happened with EWhenClosedBeta. In this case e; is a value vo and

e o¢lX,
e ep = Vo,
e S'=5§,
e Y =3
e W =¢€
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So the reduction is really
e when o then e; else vo, L, S > V9, S, €, X.
It suffices to show

e Vp.(pol(e) = p) — pc C p. There is no p such that pol(e) = p. So the statement is trivially
true.

e 0/ J0’. We get this by
e (S,m')>0’. We already know that.

o (v2,0',m') € [T]E°. We already know (vo,0, m) € [T]Ecupouc). By|Lemma 4.6{pc C pclipol(o).
Hence we get the goal by

O
Lemma 8.20. If (e,0,m) € [t]¢ and pc C pol(o), then (e then unclose 0,0, m) € [T] Ec.

Proof. By induction on m. It suffices to show (closed o in e,0,m) € (ﬂgfi It is clear that closed o in e
is not a value. So let S,0’, m’ such that

e 0/10,

e (S,m')>0’ and

e m <m.
Also let ep,S’, w, X, L’ such that

e closed oine,X,S >~ ep,S,w, 2"
There are two cases:

1. (e,0,m) € fﬂgg In this case e is not a value. Hence the reduction must have happened with Eclosed.
Hence we know there is a e’ such that

e e, X\{0},S>¢',S", w,X and

o eg =closed oin e’.
Because (e,0,m) € fﬂg; we have
e Vp.pol(w)=p—=pcCp
and there is a 0" such that

=
o (S, m')>0",
e (e/,0”,m') € [T]}".

It suffices to show

Vp.pol(w) =p — pc C p. We already know that.
e 0" J0’. We already know that
(S, m’)>0". We already know that.

(closed o in e’,0”,m’) € [T]2°. We get this by induction.

2. (e,0,m) € fﬂgi In this case (e,0, m) € [T]y. So there is a value v such that v = e. Because v is a
value, the reduction must have happened with EclosedBeta. Hence we know that

e S'=S,
o ep =V,
e w = unclose(o) and
e Y =1
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So the reduction is really
e closed o0 inv,%Z,S = v, S, unclose(o), L.

It suffices to show

pc C pol(o). This is one of our assumptions.
e 0/ J0’. We have this by
(S,m’)>0’. We already know that.

(v,0’,m’) € [T]R°. We get this by [Lemma 8.5

Lemma 8.21. If (e,0,m) € [t]# and pc C pol(o), then (close o in e,0,m) € [T] EC.

Proof. By induction on m. It suffices to show (close o in e,0, m) € [ﬂ‘éi It is clear that close o in e is
not a value. So let S,0’, m’ such that

e 0/ 10,
e (S,m')>0" and
e m’ <m.
Also let eg,S’, w, X, X’ such that
e closeoine, X, S>ep, S, w, L.
The reduction must have happened with Eclose. Hence we know
e S’ =8,
e ¢g =closed o in e,
e Y/ =2 and
e w = close(0).
So the reduction is really
e close oine, L, S > closed o in e, S, close(o), L.
It suffices to show
e pc C pol(o). We already know that.
e 0/ 0 0'. We already know that

e (S,m')>0’. We already know that.

e (closed o in e,0’,m’) € [T]E°. We get (e,0’,m’) € [T]E° by The goal follows by
Lemma 8,20

O

Theorem 8.1 (Unary Fundamental Lemma).
IfT;5;0 Fpc e:Tand 0/ 30 and (5,0',m) € [T']v, then (5(€),0’,m) € [T]5".

Proof. By induction on I';2;0 Fpc e : T.

® var:

x50 e x it o
, X 1T, & pcX:T

In this case € = x and ' = I/, x : 7,I'”". We have to show (8(x),0’,m) € [T|E°. By assumption
0/,

(6,0’,m) € [T',x: T, y. Therefore since x € dom(T"’,x : T,T""’) we have (5(x),0’,m) € [T]y. The
goal follows directly from the construction of [t]E°.
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nat:
neN

F;Z;Gl—pcn:j\fL

nat

In this case € = n. We have to show (8(n),0’,m) € [N1]E®. It suffices to show (n,0’,m) € [N]y.
This is trivially true.

open:
Mru{oh@kpce:t pc C pol(o)
- open
2,0 Fpcopen oine: T
In this case € = open(o) in e. We have to show (§(open(o) in e),0’,m) € [t]E° which is equivalent
C

to showing (open(o) in 8(e),0’,m) € [t]E°. By induction (5(e),0’,m E [T]E )
Hence by [Lemma 8.8 (open(o) in &(e),8’, m) € [T]E°.

opened:
M2U{oh0kpce:T pc C pol(o)
opened

I'; 20 Fpc € then unopen 0 : T
In this case € = opened(o) in e. We have to show (§(opened(o) in e), 6 (ﬂ’gc which is
equivalent to showing (opened(o) in §(e),0’,m) € [t]%°. By induction (5(e) ) € [T]E°.
Hence by (opened(o) in §(e),0’,m) € [T]E°.
A:

Fox:t;2/s OFpcre:1o N
M50 Fpe Ax.e: (T Zhpel L

In this case € = Ax.e and T = (Ty ELpe T2)+. We have to show (§(Ax.e),0’,m) € [(t; Lpe T2) 1 ]EC.

It suffices to show (Ax.8(e),0’,m) € [Ty X/—’Ee To]v (remember we assume that x is distinct from the
variables replaced by 8). So let 8”7, m’ such that

- 9”; 9/7
— m’ <m and

— (v,0”",m’) € [11]v.

. 'We have to show ([v/x]5(e),8”, m’) € [t2]F°. Because we assume that x is distinct from all free vari-
ables, in particular those in the codomain of & by [Lemma 7.1|it suffices to show (8U{(x,v)} (e),0”, m’) €

[T2]%°. By [Lemma 8.23|(8,0”, m’) € [T]v. Hence by [Lemma 8.1 (§ U{(x,v)},8”, m’) € [T,x: T ]v.

By [Lemma 6.2/6” J 0. Hence by induction (§ U{(x,v)}(e),0”,m’) € [12]%°

prod:

r,z,el_pc €1 .1y r,z,el_pc €o Ty
I3 250 Fpe (e1, e2) : (11 X )"

prod

In this case € = (e, e2). We have to show (8((eq,e2)),0’,m) € [(T1 X T2)1]E which is equiva-
lent to showing ((8(e1),8(e2)),0’,m) € [(T1 x T2)*]F¢. By induction (5(e1),0’,m) € [7;]F¢ and

(6(62)79/7”1) € T2 ‘PC.
Hence by ((8(e1), 8(e2)), 0", m) € [(T1 x T2) E°.

app

I 250 kpc et (T LN )P

T 250 bpc ea 7] PC 1o pcLUp C pc’ T <y ro5

app
F;Z;B }_pC €1 €2 . Ty

In this case € = e; es. We have to show (6(e; ez), 0’ m) € [12]E which is equivalent to showing

((6(61) 6(62)),6’,111) S ’—TQ]EC. By induction (6( ) 6’ |—T1 j TQ -|pc and (6(62),6/,111) S
[Ta]E°.

By [Lemma 4.13| pc C p.. Hence by [Lemma 8.10| (8(eq) &(e2),0’,m) € [t2]F°.
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o fst
I 20 pe e (11 x 12)P PCT

r, Z, 0 }_pc fst (e) 1T
In this case € = fst(e). We have to show (5(fst(e)),0’,m) € [t1]|E° which is equivalent to showing
(fst(d(e)),0’,m) € [1,]E°. By induction (5(e),0’, m) € [(t1 X T2)P|".
Hence by [Lemma 8.11| (fst(5(e)),0’,m) € [11]E°.

e snd Analogous to the case for fst.

fst

e inl:
r, Z, 0 l_pc e T

250 Fpeinl (e) « (1 + )t

inl

In this case € = inl e. We have to show (8(inl(e)),0’,m) € [(T1 + T2)1]E¢ which is equivalent to
showing (inl(3(e)),0’,m) € [(t1 + T2)1E°. By induction (8(e),0’,m) € [11]E°.
Hence by (inl(8(e)),0’,m) € [(T1 +T2)-]}".

e inr: Analogous to the case for inr.

® case:

250 pce: (t) + 1)
pCr Fox 5250 Fpeup €1: T Iy 1250 bpoup €20 T T < Ty Ty < Th

case

I 250 Fpc case e of |inl (x) = ey |inr(y) = ex: 7T
In this case € = case(e,x.ej,y.e2). We have to show (§(case(e,x.e1,y.e2)),0’,m) € [T]E°. By
our assumptions about variables x ¢ dom(d) and y ¢ dom(5). Hence this is equivalent to showing

(case(d(e),x.5(e1),y.5(e2))),0’, m) € [T]E°. We get the goal by [Lemma 8.15|if we can show

— (8(e),0’,m) € [(t1 +7T2)1]E. We get this by induction.

-Ve',m'8” 30/ Am' <m —= W.(v,0",m') € [11]v — ([v/x]6(e1),0”,m') € [T]Ecup. Let
0”, m’ such that 8” J 8’, m’ < m and let v such that (v,0”,m’) € [11]y. By it
suffices to show (6 U{x,v}(e1),0”,m’) € [t]v. We get this by induction if we can show

x 0”7 30. We get this by transitivity (Lemma 6.2)).

x (SU{x,v},0”, m') € [T,x:11]v. By this is the case if
- (6,0”,m') € [T]vy. We get this by [Lemma 8.23
(7,0, m) € [{]v. We get this by

-Ve',m'8” 30/ Am' <m — W.(v,0" m') € [ta]y — ([v/yld(es),0”, m’) € [ﬂEC"'p. Let
0”, m’ such that 6” J 0’, m’ < m and let v such that (v,0”, m’) € [12]v. By it
suffices to show (& U{y,v}(e2),0”, m’) € [t]v. We get this by induction if we can show

* 0”7 160. We get this by transitivity (Lemma 6.2)).
x (0U{y,v},0”,m') € [T,x:14]v. By this is the case if
- (6,0”,m') € [T]v. We get this by [Lemma 8.23
-+ (v,0”,m’) € [13]v. We get this by
e new:
M550 kpce:t pcC T (D) <t
250 Fpc new (e, T) : (ref )t

new

In this case € = new(e, ). We have to show (8(new(e,T)),0’,m) € [(ref T)1]E°. This is equivalent
to showing (new(8(e),t),0’.,m) € [(ref ©)*]F°. T and 1’ must have the forms AP and B9. By
inversion of T/(X) <: T with sub-policy we get B <: A. Because pc T T we get pc C p. We get
(8(e),0’,m) € [B9]E by induction. The goal follows by [Lemma 8.16

e loc: We have to show (8(1),0’,m) € [(ref T)1]F¢. It suffices to show (1,0’, m) € [ref T]F°. We have
this by the definition of [ref T]F because pc C .

e sub:
M550 bpe ext’ pc C pc’ <t

F;Z;e}_pce:T

In this case € = e. By induction we get (e,0’,m) € [T/]P¢". We get the goal by and
[Lemma 8.6l

sub
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8.3

Lemma 8.22. For allv,v/, A, W, T, mif (v,v/, W, m) € [1]+, then (v, W. 91,

deref:

20 bpc e (ref T)P pCt T<: v
; deref
F,Z,e }_pc le:T
In this case € =le. We have to show (5(!e),0’,m) € [t/]E° which is equivalent to showing (!(5(e)), 6’
[T/, By induction (§(e),0’,m) € [(ref T)P]E".
Hence by [Lemma 8.17| (!(5(e)),0’,m) € [t]E¢.
assign:
I5;0 bpc e (ref T/)P (o) <1 M50 pce T pcUpCt |
. 7. L assign
[0 bpc e:=e’ tunit
In this case € = e := e’. We have to show (86((e := €’)),0’,m) € (unltﬂ which is equiva-
(&

e
lent to showing (8(e) := 8(e’),0’,m) € [unit]E°. By induction (5(e),0’,m) € [(reft’)P]E° and
(8(e”),0’,m) € [T]¢*

We get pc C 1/ by [Lemma 4.13| Hence we get (8(e) := 8(e’),0’,m) € [unit*]}¢ by [Lemma 8.18

unit: .
unit

I3 250 bpe () :unit™

In this case € = (). We have to show (§(()),0’,m) € [unit-]P¢. It suffices to show ((),0’,m) €
[unit]y. This is trivially true.

close:

I 2\{o};0Fpce:T pc C pol(o)

- close
I''5;0 bpecclose oine: T

In this case € = close(o) in e. We have to show (6(close(o) in e), 0 m € [7]¥° which is equivalent

to showing (close(o) in 5(e),0’,m) € [T|E°. By induction (§(e),8’, m (ﬂpc
Hence by [Lemma 8.21| (close(o) in §(e),8’, m) € [T]E°.
closed:
Fo\{0}0tpce:t pc C pol(o)
closed
I'; 250 Fpc e then unclose 0 : T
In this case € = closed(o) in e. We have to show (§(closed(o) in e),0’.,m) € [T|E® which is

equivalent to showing (closed(o) in §(e),0’,m) € [t]F°. By induction (5(e), 0 ,m € [T]E°.
Hence by [Lemma 8.20| (closed (o) in (e),0’,m) € [T]E°.
when:

ra Zu {O_}; 0 }_pCUp()l(w) €1:T ra Z; 0 l_pC\_lp()l(o'] €2 T POI(G) Lt

when
I'; 250 Fpc when 0 then e else g : T

In this case € = when o then e; else eo. We have to show (§(when o then e; else e;),0’,m) € [1]E°
which is equivalent to showing (when o then §(e;) else 5(e2),0’, m) € [T]E°.

By induction (8(ey),0’,m) € ]’ﬂ‘écup‘”(‘f) and (8(ey),0’, m) € "T-‘Ecupol(a).
Hence by [Lemma 8.19 (when o then §(e;) else §(e2),0’,m) € [T|F°.

Properties of the binary relation

v amd (', W.0, m) €

mj € [T
7]y and for all v,v/, A, W, A, m if (v,v/,W,m) € [A]%], then (v,W.0;,m) € [A]y and (v/,W.05,m) €
v

[Alv.

Proof. By mutual induction on the structure of T and A.

unit: Then v=v'=(). ((),W.0;,m) € [unit]y and ((),W.03, m) € [unit]y by the definition of
[unit]y.
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N: Then v=v’=n and n € N. (n,W.0;,m) € [N]y and (n,W.02, m) € [N]y by the definition of
[Nv.

T1 X Ta. Then v = (v1,ve) and v/ = (v{,v}) and (v1,v{,W,m) € [t;]# and (v2,v5,W,m) €
WTQ]]'G. By induction (vl,W.Gl,m) S [Tﬂv,(v{,W.Gg,m) S [Tl—lv, (\)Q,W.Gl,m) € [TQ—IV and
(vi,W.02, m) € [15]v. Hence by the definition of [T x T2]y we have ((vi,v2), W.01,m) € [T1 X T2]v
and ((v{,vé),W.627m) S |—T1 X T2—|\7.

T + T2. W.lo.g. assume that v = inl v; and v/ = inl vo. Then (vi,v2,W,m) € [T1]5. By
induction (vl,W.Gl,m) S [Tflv and (VQ,W.BQ,m) S |—T1-‘\7. Hence (1T‘Ll vl,W.Gl,m) S |—T1 +T2-|v
and (lnl VQ,W.GQ,m.) S |—T1 +T2—|v.

bx : . .
1, =¥ 15: In this case v = Ax.e and v/ = Ax.e’ for some expressions e and e’. We get the claim by the
" 5,
definition of [t; =¥ o ]4.

ref T: The v =1and v/ =1 and W.0,(1) = T = W.05(l'). Hence (1,W.0;,m) € [ref T]y and
(UV,W.02,m) € [ref T]v.

Al: There are two cases:

— () C A: In this case (v,v/,W,m) € [A]{. We get (v, W.01,m) € [Aly and (v/,W.05,m) €
[A]y by induction. (v,W.0;,m) € [Al]y and (v/,W.05,m) € [Al]y follows directly from the
definition of [Al]y.

— (X)) Z A: In this case (v, W.0;,m) € [A]y and (v/,W.02,m) € [A]y. (v, W.0;,m) € [Al]y
and (v/,W.02,m) € [A']y follows directly from the definition of [A']vy.

O

Lemma 8.23 (Context monotonicity). For all T, m,0,0’,6,m’.(5,0,m) € [Ty NOC 8 Am'<m —
(6,0, m’) € [Tv.

Proof. Let T',0,0',6, m,m’ such that (5,0,m) € [TTy A® C 0/’ Am’ < m. Because (5,0,m) € [Ty
we already know dom(I") C dom(§). So it suffices to show Vx € dom(I").(8(x),0’,m’) € [T'(x)]v. Let
x € dom(T"). Then x € dom(8) and by (5,0,A) € [T']y also (§(x),0, m) € [T'(x)]v. By monotonicity of the
value relation (8(x),8’,m’) € [T(x)]v which is what we needed to show. O

Lemma 8.24.

1.
2.

If (v,v/,W,m) € []4, then for all m’ < m also (v,v/,W,m’) € [1]+.

If (v,v/,W,m) € [A]#, then for all m’ < m also (v,v/,W,m’) € [A].

Proof. By mutual induction on T and A.

unit: Let ((), (), W,m) € Junit]y and m’ < m. Then also ((), (), W, m’) € Junit]+.
N: Let (n,n, W, m) € [N]4 and m’ < m. Then n € N and hence also (n,n, W, m’) € [N]5.

Ty X To: Let ((vy,v2), (v],vs),W,m) € [t; x Tgﬂ{} and m’ < m. Then (vq,v{,W,m) € [Tlﬂ{} and
(v2,v4, W, m) € [12]#. By induction (vi,vj,W,m’) € [t;]# and (ve,vs, W,m’) € [t2]#. Hence
((Vla\)?)a (V{avéLW)m/) € ”—Tl X T2-”<71'

T1 + T2: Assume (inl vo,inl vj, W, m) € [11 + T2]5 and m’ < m. Then (vo,v),W,m) € [1:]%.

By induction (vo,vj, W, m’) € [11]%. Hence (inl vo,inl vj, W, m’) € [11 + T2]%. The case for inr
works analogously.

z, z,
1, =¥ 1y, Assume (Ax.e,Ax.e’,W,m) € [1; =¥ 1]{ and m’ < m.
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Let W O W, m” <m/, (vo, v, W ,m"”) € [t1]4 and £; D £ C I, such that £; ~4 Lp. We need to
show ([vo/xle, [vi/xle’,W' £1, 55, m") € [1a]¢.

)

. b
Because m’ < m and m” < m’, also m” < m. Hence we get this from (Ax.e,Ax.e’,W,m) € [1; =P
A
Tg“v .

We already know (A x.e,W.0;,m) € [Ty Lp o]y and (A x.e/,W.02,m) € [T =P To]v. We get
’ z, ’ / z,
A x.e,W.0;,m) € [11 =¥ 1]y and (A x.e/,W.05,m') € [1; = T3]y by
o tef T:

Let (L,U/,W,m) € [ref ] and m’ < m. Then W.0;(1) = T = W.05(1) and (1,1') € W.. Hence
(LU, W,m') € [ref T]5.

e Let (v,v/,W,m) € [AP]{ and m’ < m. There are two cases:

1.1 C A. In this case (v,v',W,m) € [A]{. By induction (v,v/',W,m’) € [A]{. Hence
(v,v,W,m’) € [AP]4.

2. 1IZ A. Then (v, W.0;,m) € [Aly and (v/,W.02, m) € [A]y. We get (v, W.0;,m’) € [A]y and
(v, W.02, m') € [A]y by which gives us (v,v/,W,m’) € [AP]3.
O

Lemma 8.25. For all v,v/, W, W/ m,t. (v,v/,W,m) € [t AWLC W’ — (v,v/, W' m) € [t]# and for
all viv, W W/ m, A. (v,v/,W,m) € [AT# AWLC W — (v,v/, W' m) € [A]4.

Proof. By mutual induction on the structure of T and A.
e unit: Then v = () =v’ and ((), (), W, m) € [unit]{ anyway.
e N: Let Then v=n=v’ and n € N and hence also (n,n, W', m) € [N].

T1 X T2: Then v = (v1,v2), v/ = (v{,v}) and (v1,v{,W, m) € [11]% and (v2,v5, W, m) € [12]5. By
induction also (vi,v{, W, m) € [t;]# and (v2,v5, W/, m) € [t2]4. This suffices to show the goal.

Ty + T2: W.lo.g. assume v = inl v; and v/ = inl vo. Then (vi,vo, W, m) € [11]v. By induction
(v1,v2, W/ m) € [11]y. This proves the goal.

I, .
71 =% 15 In this case v = Ax.e and v/ = Ax.e’.

— Let W’ O W', m/ <m, vi,va s.t. (vi,vo, W’ m’) € [11]y and X;,Zs such that £} D X C
Yo and I =~y Xy, Also let m’ < m. We have to show ([vi/x]e, [vo/x]le/,W" X,Z5,m/) €
[ta]#. By transitivity of C we have W £ W”. Since we already know m’ < m,
(vi,ve, W” m’) € [11]y and £ D 4 we get ([vi/x]e, [va/xle’,W" £i,55,m') € [12]# from

(Ax.e,Ax.e’, W, m) € [1; =P To |4

— From (Ax.e,Ax.e’,W,m) € [ty =P T ]% we know (A x.e, W.0;,m) € [1; TP To]v. We get

(A x.e, W’.8;,m) € [t = 3]y by

— From (Ax.e,Ax.e’,W,m) € [1; tp T ]5 we know (A x.e/, W.05,m) € [T =p To]y. We get
(A xe,W.05,m) € [11 ZF 1]y by
e ref T/: In thiscase v=1,v/ =1 and W.0,(1) =1’ = W.05(1) and (1,1') € W.3. Because W I W

we know W’.0; I W.0;, W .05, JW.0, and W/. D W.3. Hence also W'.0;(1) =1’ = W'.05(1) and
(L,V') € W.B. Consequently (1,1', W', m) € [ref t/]5.

e AP: There are two cases:
—p C A: In this case (v,v/,W,m) € [A]# By induction (v,v/,W’,;m) € [A]# and hence
(vvvlvwlam) € ”’AP'H\G

—p £ A: In this case (v, W.0;,m) € [t]y and (v/,W.03, m) € [t|y. Because W C W’ in
particular W.0; C W'.0; and W.0, C W’.0,. Hence by [Lemma 8.41 (v,W’'.01,m) € [T]v and
(v/,W’.02,m) € [t]y and consequently (v,v/,W’,m) € [AP]+.
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O

Lemma 8.26 (Context monotonicity). For all I, W, W'y, m,m’.(y,W,m) € [T]# AWLC W Am’ <
m — (Y,W’,m’) S H’I’"ﬂé

Proof. Let T,W, W' vy, m, m’ such that (y, W,m) € [T]3s AW C W/Am’ < m. Because (y,W,m) € [T
we already know dom(I') C dom(y). So it suffices to show ¥x € dom(T").(y1(x),y2(x), W, m’) € [T(x)]4.
Let x € dom(T). Then x € dom(y) and by (y,W,m) € [T]¢ also (y1(x),v2(x),W,m) € [T(x)]#. By
ILemma 8.25[ and [Lemma 8.24| (y1(x),v2(x), W/, m’) € [T(x)]% which is what we needed to show. O

Lemma 8.27. For all = we have (Z4) , = 2 4.
Proof. C: Let 0 € (Z4),. Then in partiuclar o0 € £ 4.

J: Let 0 € 4. Then pol(Z) C A. Because of this and of 0 € L4 we have 0 € (Z4) 4.

Lemma 8.28.
1. If 2D 2/, then Zg D2/ 4.
2. 2D 'y, then Zgq4 D2/ 4.

Proof. 1. Let X D X'. Let 0 € ;. Then o € X’ and pol(c) C A. By assumption o € L and hence
cEXy.

2. Byl Z42(X'4)y. By|Lemma 8.27| (Z'4) 4 = X' 4. The goal follows by transitivity.
O

Lemma 8.29. Let (e,e/,W,>, >/ m) € [t]f and W I W, &, D 5,5, D3/ 7~y 2 and m' < m.
Then (e,e’,W’, 2,75, m') € [T]£.

Proof. By induction on m. There are two cases:

1. (e,e/,W,%,Z' m) € [[ﬂ]ﬁﬁ. In this case it suffices to show (e,e’, W', Z1,%5,m') € [[ﬂ]{lﬁ. By
assumption X; &4 Xy. Let X1, X} such that

o Z{ 2 Zl?
° Zé :_> 227
) Zi A Zé,
W’ and m” such that
em/ <m,
e W' W' and

S1,S9 such that

(] (51, SQ, m”) l/>l w”.

By transitivity also

e X DX,

exyor

e W’ I W (Lemma 7.2) and
e m” <m.

Hence we are in one of three cases:
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(a)

e1 €V N e & VA
! A " ! 1 / !/
Vei,S1, L1, w,e5, X5, Sy, w'.

. 1"
w; Xy

Z{ Fel, Sl ::>e{, Si /\

/. 1
w52y

(e,e’) € < (e1,€2) | Zit ey, Sy == ¢}, Sy —
(W Yyn s 0 VI CAVEIYCA) -

Jw” W AW A ( i,séym/l) “[;l (W///) A

w &{,qv/,,_ﬁ W' A (ef, e, W 5 5/ m") e [T]¢
In this case it suffices to show

er ¢V N e & VA
Vel,S1, 2y, w, el XY SL w'.

. 1"
w; Xy

Zi Fey, S1 ‘_——>€{, Si AN

/. "
w5 Xy

(e,e’) € {(e1,e2) | It ey, Sy == e}, ShH—
(W afyn g 0 VEJ CAVIYCA) —

IWW WA (84,85, m”) B (W) A
w &{/4\////_[3 w’ A (eiveé,wmaXlaXQ?m”) € “—T-”é

By assumption neither e nor e’ is a value. So let w, w’, eg, eé,Z{’, 25,81, S5 such that

e X,5 >~ep,S1,w, XY
® e %), - e, S5, w’, 1Y
Also assume w %ﬁ,,,'ﬁ w' VI CAVZXI/CA. Then there is a W such that
° W/// j W//
A
o (S{,85,m") bW
o W &j\/%//,IAB (,U/
o (ep,ef, W, L,/ m") € [1]£
It suffices to show
e W JW", We already know that.

A
e (51,55, m")> W’ We already know that.
o w &{}VW,B w’. We already know that.

e (ep, eé,W'”,Zl,Zg,m”) € [t]#. We get this by induction.
e1 ¢V AVel,S], 27, w.

(e,e’) € < (e, e2) Liken S =L e1, S — ~(pol(w) ZA) A
) 1,€2
(HW/I/.W/// g W// /\ (517 327 m/l) ‘[/>L (W//I) /\
(ef, e, W, 5,5/, m") € []4)

In this cases it suffices to show

e1 ¢V AVel,S], 27, w.

ikey, Sy % er, S — —(pol(w) C A) A
(eve/) € (61762) A
(HW///.W/// g W// /\ (517 327 m//) > (W///) /\
(617 €a, W/Na Zlv 227 m/,) € H—T—”‘é)

By assumption e is not a value.So let w, e, Z{,S] such that

e X(,S >ep,S,w, X,
Then
e ~(pol(w) T A)
and there is a W' such that
[ ] WN/ | W”
o (5,52, m") bW
e (ep,e/,W” £ 5/ m") e [t]#)
It suffices to show the following:
e —(pol(w) C A). We already know this.
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e W JW". We already know this.

e (S1,S2,m”) EW” . We already know this.

o (ep,e/,W"” 51,55, m") € [t]#. We get this using the induction hypothesis.

es &V AVe,, S5 LY, w.

T4 - e, Sy L el S5 — —(pol(w) T
"

A
(W W W A (Sy,S5,m”) b W A
(er,el, W 1,5/ m") € [t]#)

) A
(c) (e,e’) € < (e, e2)

In this case it suffices to show
es &V AVel, S5 2 w.
w; Y

Yok eq, So == e}, S, — —(pol(w) T A) A\
1 /\

(e,e’) € { (e, e2) g
@AW W W A (Sy,Sh,m") > W

(e1,es, W 51,55, m") € [T]£)

By assumption e’ is not a value. So let w’, eé7Z§’, S/ such that
e e %), - e, S5, w’, 1Y
Then
e ~(pol(w’) C A)
and there is a W' such that
° W/// j W//
o (S1,SL,m") B W
It suffices to show the following:
e —(pol{w’) C A). We already know this.
e W JW"”. We already know this.

A
e (51,85, m")> W, We already know this.
o (e, eé,W'”7 T1,59,m"”) € [t]#. We get this using the induction hypothesis.

2. (e,e/,W, 5,2/, m) € {(v,v, W, Lc,,Lc,,m) | (v,v', W, m) € [1]5}}. It suffices to show (e,e’, W', m') €
[t]5. We already know (e,e’,W, m) € [t]# and that e and e’ are values. We get the goal by
[Cemma 8.24] and [Lemma. 8.25

O

Lemma 8.30 (Equivalence of high expressions). If (e, 0, m) € [T] EC and (e’,0’,m) € [7] EC and T Z A and
pc Z A, then V2, 2/ B. L~y 2 — (e,e/,(0,0/,B), 2,2/, m) € [T]£.

Proof. By induction on m. There are two cases:

1. (e,0,m) € (T]E; In this case e is not a value.
It suffices to show (e,e’,(0,0’,3),X, L', m) € ﬂ—ﬂ]ﬁﬁ. We already know £ ~4 X’. Let £;,Z5. such
that

.21227
.ZZQZ/a

o Zl ~A 227
W’ m’ such that

e m' <m,
e W/ (0,0',B),

and Sp, S such that

o (S1,S;,m)) bW
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e1 ¢V AVei,S1,2, w.

Sk en, S1—Eh el SL s —(pol(w) T A) A
It suffices to show (e,e’) € < (e, es) u
AW W W' A (S],S5,m') & (W) A
(ef, e, W”, 2,2/, m’) € [7]#)

We already know that e is not a value. So let w,eg,Z{,S] such that

e ¢,X1,5 > ep, ST, w, X1

Because (S, S2, m’) s W', also
o (S, m') bW 0.
Because W’/ 1 (0,0, 3) also
e W0, 30
Hence from (e, 0, m) € [ﬂE;
e Vp.pol(w)=p—=>pcCp
and there is a 0” such that

L4 9” ; W’.Gl
o (S/,m')>0"

o (ep,0”,m') € [T]§°
It suffices to show the following:

e —(pol(w) C A). Assume pol(w) C A. Then we know pc C pol(w). By transitivity
pc C A. But by assumption pc (£ A. ¢

e (07, W'.0,, W .B) JW’'. We have to show the following

— 0”7 I W’'.0; We already know this.

— W'.0, O W’'.0, We have this by
— W' D W'.3 We have this by reflexivity.

o (S!S, m’) & (6”7, W05, W'.B). We have to show:

- W'.B C dom(8”) x dom(W’.05). From (Sq,S,, m’) LW we know W' B C dom(W'.0;) x
dom(W’.05). Because 0 3 W’.01, we have dom(W’.0;) C dom(0”). Hence dom(W’.0) x
dom(W’.05) € dom(6”) x dom(W’.03). We get W'.p C dom(0”) x dom(W’'.05) by
transitivity.

- V(L) e W.B.08"(1) = W'.05(1") A (S1(1), S2(l"), (8", W'.05, W.B), m') € ﬂ—e”(l)-ﬂé).

Let (1,1") € W’'.3.. Because W'. C dom(W’.6;) x dom(W’.0,), we must have 1 €
dom(W’.01). Because 8” J W’.04, of course also 1 € dom(0"”) and 0”(1) = W’.0,(1). From
(S1,S2,m') & W/ we know W01 (1) = W’.05(1') A (S1(1), Sa (1), W/, m’) € TW".0, (1)]4.
Because 8”7 3 W’.0; we know that W’.0;(1) = 0" (1). Hence 8" (1) = W'.05(1").

By [Cemma 8.3 either S{(1) = S1(1) or pol(type(S{,1)) = pol(w).

In the first case this gives us (S7(1),S2(l'),W’,m’) € [W’.0:(1)]# which is equivalent to
(S1(1),S2(1), W', m’) € [8”(1)]. We have already shown that (8”, W’.05, W'.3) I W', so
we get the goal by

In the second case —(pol(type(Si,1)) C A). We also know (S{,m’)>0". Hence 0”(1) =
type(S{,1). Hence we have to show (S](1),Sa(1’), (6", W".05, W'.3), m’) € [type(S{, )]+
type(S1, 1) must have the form AP. We already know p = pol(type(S{,1)) £ A. Hence it
suffices to show

* (S7(1),0”,m’) € [Aly From (S;,m’)>0" and 1 € dom(08”) we get (S{(1),8”,m’) €
[type(Sq,1)]v which implies the goal.

* (Sa(1"),W'.85,m’) € [A]y From (S1,S2, m’) B W we get (Sz,m’) > W’.05. Because
also I/ € dom(W’.03) this gives us (S2(l'), W' .05, m’) € [W'.05(1')]y. We have al-
ready shown that W’.05(1') = 0”(1) = type(Sq,1) So we have (S2(1'),W’.062,m’) €
[type(S{,1)]v which implies the goal.
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— (S§{,m')>06". We already know this.
~ (S3,m’) > W'.8,. We know (S1,Ss, m’) & W/ which implies the claim.

o (eg,e/, (07, W.0,,W'B), L, 2", m') € [t]f. We already know (eg,0”,m’) € [T]}¢, pc Z A
and T Z A. We can also get (e/,W'.05,m’) € [T]E° by We get the goal using the
induction hypothesis.

2. (e,0,m) € [T]E;. In this case e is a value v and

o (V,e,m) € |—TWV~

There are two further cases:

(a) (e/,0’,m) € fﬂg{i In this case e’ is not a value.
It suffices to show (v,e’,(0,0’,B),Z,X',m) € [f”cﬂéﬁ. We already know £ ~,4 X’. Let X, X,.
such that
[ IPERSD
e 5,071
o X~y Lo,
W’ m’ such that
e m' < m,
e W/ (6,0%,B),
and S1,So such that

hd (51752,m/)§W'.
es &V AVe,, S5 20, w.
So b ep, Sz s eb, S — —(pol(w) T A) A
It suffices to show (v,e’) € < (e1, e2) 20 F2 92 29 92 (pol(w) C A)

(W7 W JW' A (S1,85,m/) & W” A
(e1, e, W, 2,2/, m’) € [T]¢)
We already know that e’ is not a value. So let w, ep, L5, S5 such that

® e 55,5 - e, S5, w, L5

Because (S1,S2, m’) g W' also
o (So,m')>W'.0,.
Because W’ 3 (0,0, ) also
e W.0, 30
Hence from (e’,0’, m) € [T}E;
e Vp.pol(w)=p—=pcCp
and there is a 8" such that
e 0 JW'.0,
o (S5, m' 0"
e (ep,0”,m’) € [T]g°
It suffices to show the following:
e —(pol(w) C A). Assume pol(w) C A. Then we know pc T pol(w). By transitivity
[Cemma 4.1] pc C A. But by assumption pc £ A. £
e (W'.01,0” W' .B) 3 W’ We have to show the following
— W’.0; 2 W’.0; We have this by [Lemma 7.2}
— 0”7 3 W'.06; We already know this.
— W'. D W'. We have this by reflexivity.

o (S1,S,,m/) b (W".01,0”, W' .B). We have to show:

- W', C dom(W'.06;)xdom(68”). From (Sl,SQ,m’)éW’ we know W’.p C dom(W’.01)x
dom(W'.05). Because 8 3 W'.05, we have dom(W'.05) C dom(0"”). Hence dom(W’.0;)x
dom(W’.05) C dom(W’.01) x dom(8”). We get W'.p C dom(W’.061) x dom(6”) by
transitivity.
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— (VL) e W.B. W01 (1) = 0" (V)A(S1(1),S5(17), (W'.01,0”, W'.B),m") € [W.0:(1)]5).
Let (1,1") € W'.3.. Because W/. C dom(W’.01) x dom(W’'.05), we must have 1’ €
dom(W'.0;). Because 8”7 J W'.0,, of course also 1’ € dom(0”) and 8”(1') = W’.05(l').

From (51752,m’)§W' we know W’.01 (1) = W’.02(1)A(S1(1), So (1), W/, m’) € TW’.0,(1)]4.

Because 0”7 I W’'.05 we know that W/.05(1’) = 0”(1’). Hence W’.0,(1) = 0" (/).

By [Lemma 8.3 either S}(1') = S2(1’) or pol(type(S5,1')) = pol(w).

In the first case this gives us (S1(1),S5(1),W’,m’) € [W’.0;(1)]5 We have already

shown that (W’.61,0”, W’.3) 3 W', so we get the goal by [Lemma 8.25]

In the second case =(pol(type(S5,1’)) C A). We also know (S5, m')>0". Hence 8”(1') =

type(S4,1’). We have already shown that W’.0(1) = 8”(1’). Hence it suffices to show

(S1(1), S5(1"), (W’.01,0”,W'.B),m’) € [type(Ss, 1)]+%-

type(S4, 1) must have the form AP. We already know p = pol(type(S5,1’)) Z A. Hence

it suffices to show

* (S1(1),W’.01,m’) € [Aly From (S1,S2, m’) éW’ we get (S1,m’) > W’.0;. Because
also 1 € dom(W’.0;) this gives us (S1(1),W’.0;,m’) € [W'.0:(1)]y. We have al-
ready shown that W’.0:(1) = 08”(l’) = type(S4,1') So we have (S1(1),W’.0;,m’) €
[type(S5,17)]v which implies the goal.

x (S4(1),8”,m’) € [A]y From (S7,m')>0" and 1’ € dom(6”) we get (S5(1'),0”,m’) €
[type(S5,17)]v which implies the goal.

Sy, m’')>W’'.05. We know (Sy,S2, m’) £ W’ which implies the claim.

S5, m’)>0”. We already know this.

o (v,ep, (W'.01,0",W.B),Z, L', m') € [t]&. We already know (e}, 0”,m’) € [T|E°, pc Z A
and T Z A. We can also get (v, W'.0;,m’) € [1]E° by We get the goal using

the induction hypothesis.

-
-

(b) (e’,0’,m) € [T]};. In this case e’ is a value v/ and

e (v/,0',m) € [T]v. It suffices to show (v,v’, (6,0’,B),m) € [t]{. T has the form AP for some
p. Since T IZ A also p IZ A. Hence it suffices to show (v,0, m) € [A]y and (v/,0’,m) € [A]y.
These follow directly from (v,0, m) € [t]y and (v/,0’,m) € [t]v.

O

Lemma 8.31 (Binary Semantic subtyping).

1. VA,AL A <t A/ — [ATE C [AT4
2. V1, 7'.

() <7 = [ € 14

(b) t<:t — ”_T-ﬂé C [[T’]]é

Proof. By mutual induction on A <: A’ and T <: 1'.

1. e sub-ref In this case A = ref To = A’. Hence [A]5 = [A']# and we get the claim by reflexivity.
e sub-prod In this case

- A=TyXT]
—Al=1 xT1]
— T <:Ty
- T <

Let ((vi,v2), (v{,v3), W, m) € [0 x 194 Then
— (vi,vi, W,m) € [0y
— (v, v5,W,m) € [t)]5

Hence by induction
~ (vi.vi,W,m) € [1,]4
— (v, v5,W,m) € [11]5

This directly gives us ((vi,va), (vi,v4),W,m) € [t11 x 7] 5.
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e sub-sum In this case
- A= To + Té
-Al=1+1
— Tp <! T1
- T <7
Let (v,v,W,m) € [t +1)]#. W.Lo.g. assume v = inl vy and v/ = inl v}. Then
— (vo,vg, W, m) € [l
Hence by induction
— (vo,vg, W,m) € [t]
This directly gives us (inl vo,inl vj, W, m) € [11 +t{]+.
e sub-arrow In this case
—A=1 ZJ’ T1
- Al =1 ELp T4
T <: To
-1 <7
-p'Cp
- rcy
Let (Ax. e,Ax. ¢/, W, m) € [t =p 714 We need to show (Ax. e, Ax. e/, W, m) € [t} ELp T4
Let W’ such that
-Waw,

m’ such that

- m' <m,
v, v’ such that
- (v,v W', m/) € [t)1%
and X, X5 such that
~ 5, 21'C5,and
— X1 ~4 Lo.
Then by induction
- (v, W', m/) € [tw]$
and by transitivity
- X DX Ci.
Hence
— (v/xle,v'/xle’,W' L1, Lo, m') € [11]v.
We need to show ([v/x]e, [v//xle’, W' L1, X5, m’) € [1]]y which we get by induction. We still
need to show
— (. e, W01, m) € [t "% Ty
— (Ax. e/,W.05,m) € [T] ELp 1 ]v.
We already know
— (M. e,W.01,m) € [10 by T v
— (Ax. e/, W.0,,m) € [1o 2 11]v.
From this we can get the goals by
e sub-unit In this case A = unit = A’. Hence [A]{} = [A']# and we get the claim by reflexivity.
e sub-nat In this case A =N = A’. Hence [A]$# = [A’]{} and we get the claim by reflexivity.

2. (a) The only applicable rule is sub-policy. In this case
o T=AP
e T =BP
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epLyp
e A<:B

Let (v,v/,W, m) € [AP]#. There are two case

i. p C A In this case
e (v,v,W,m) € [A]#
Then by induction also
e (v,v',W,m) € [B]

Because p C A (and in particular therefore not p IZ A) this suffice to show (v,v/,;W,m) €

B2 14.
p Z A. Hence we have
. (V,W.el,m) S |—A1\7
] (VI,W.OQJH) S |—A—‘\7
By [Cemma 8 we get
e (VW.Oy,m) € |—B-|v
. (V/,W.eg,m) S |—B‘|\7

ii.

which suffices to show (v,v/, W, m) € [[Bp/ﬂ{} because p £ A (and hence in particular not

pCA).

(b) The only applicable rule is sub-policy. In this case

e T=AP
o T/ =BP
epLyp
e A<:B

To show [AP]# C [[Bp,—ﬂfl we have to show Vm,e,e’, 2,/ W.(e,e/,W, L,/ m) € [AP]£ —
We do this by induction on m. Solet (e,e’,W,Z, £/ . m) € [AP]{.

(e;e/,W,Z,2",m) € [BP'J{.
There are two cases:

i. (e,e/,W,Z,Z/m) € ﬁApﬂﬁlB. In this case it suffices to show (e,e/,W,Z,Z',m) € WBP']]QB.

We get X ~4 X’. from the assumption. Let X1, X5 such that

L IPERSD I

e 2,21,

o X~y Lo,
W’ m’ such that

e m’' <m,

e W IW,
and S, Sy such that

e (S1,S5, m") B W
Then there are 3 cases:

A. (e,e') € ¢ (e1,ez)
It suffices to show
(e,e’) € < (e, e2)

We know that neithe

€1 ¢ VA €2 ¢ VA
Vel,S1, 2, w, ey, 2L S5 w.

SoFen, S1 =l el SIA

5o F eg, So —=== e}, S

(w z(}\,,'ﬁ W' VIICAVIICA) —

IWTWT IWA (81,85, m) B (W) A

W By g WA (ef,e5, W, 1,1/ m!) e [AP]E
€1 % vV A €a % VA
Vel,S1, 2, w,es, 2L Sh w’.
ke, S —==e¢], S| A

5o F es, S —== e}, S

(w %‘f/lV’-B W' VIICAVIICA) —

IWTWY IWA (81,85, m) B (W) A
Wy g WA (ef,e5,W, 2,5/ m') e [BP 14

r e nor e’ is a value. So let w, w’, eg, eé,Z{,Zé,S{.Sé such that

(0]




e X,51 ~ep,Si,w, I]

e e 55,52 -ep, S5, w' L)

Also assume w %(Al/,_ﬁ w'VIICA V LIC A
This directly gives us a W such that

e W/ JIW,

(517 Sé? m/) é W//,

e w &(/qv,,.ﬁ w’, and

o (ep,ef, W, L5/, m') € [AP]£

It suffices to show

e W/ JW’. We already know that.

A
o (51,84, m’) > W". We already know that.
o W=y, 5 w'. We already know that.
e (eg, eé,W”, 5,2, m') e [pr/ﬂ“é We get this from the second induction hypothesis.
. (e,e’) e

er ¢V AVel,S! 5!, w.

ey | e S L el 8] s —(pol(w) T A) A
€1,¢€2
EW”W” JW' A (S],So,m’) & (W) A
(e{7e27wuvza2/aml) € WApﬂé)

In this case it suffices to show (e, e’) €

e1 ¢V AVei,S1,2, w.

(o oy | TrFES: L et ST —(pol(w) CA) A
v EW”.W” IW' A (S],So,m’) & (W) A
(e],e2, W” 5,5/ m’) € [BP' &)

By assumption e is not a value. So let w,eg, S, X such that
e X,S >ep,Si,w, I}

From our assumption we get

e —(pol(w) CA)

and there is an W’ such that

o« W/ W

o (S],So,m') B W”

o (ep, e/, W' £ 5" m')ec [AP]£

It suffices to show the following:

—(pol(w) C A). We already know this

e W JW’. We already know this.

(S1,S2,m’) EwW”. We already know this.
o (epg,e/, 2,2/ m') e H—Bp/ﬂﬁ. We get this from the second induction hypothesis.
ea €V AVe,, S5 2 w.

S b ey, Sg iy el SL— —(pol(w) T A) A
. (e,e’) € ¢ (e1,e2) o 2 (IA( JEA) In this case it suf-
(AW W"” I W' A (S1,S4,m/) b W” A
(e1,e5,W”, 2,2/, m') € [APT{)

fices to show
ea €V AVel, S5 2 w.

e e d e e 5o F eg, So = eh ) S5 s —(pol(w) C A) A
) 1,2
(FW"W"” I W' A (S1,S4,m/) b W" A
(eh eé7wu7 Za Z/a m/) € "’Bp"ﬂé)

By assumption e’ is not a value. So let w, eé,Sé, ¥/ such that
e e 55,52~ ep, 55, w, %5

From our assumption we get

e —(pol(w) C A)
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and there is an W' such that

o« W/ IW

L (517 Séa m/) é WI/

o (e,ef, W £,1',m') € [AP]¢

It suffices to show the following:

e —(pol(w) C A). We already know this
e W’ JW’. We already know this.

e (S4,S4,m) EW”. We already know this.

o (e, efa,Z, 2’'m') e ﬁBp/ﬂé. We get this from the second induction hypothesis.
ii. (e,e/,W,L£,2',m) € {(v,v/,W, L, Z,,m)| (v,v/, W, m) € [AP]#}}. In this case e and e’

are values v and v’ respectively and
e (v,v/,W,m) e [AP]

There are two cases:

A. p’ C A. In this case it suffices to show
e (Vv W m)e WB]{;‘
. Because p C p’, we have p C A by transitivity (Lemma 4.1)). Hence
e (v,v,W,m) € [A]4
We get (v,v/,W,m) € [B]# by the first induction.

B. p’ Z A. We have
e (v,W.0;,m) € [A]y and
° (v/,W.GQ,m) € [A]v
by and the definition of [AP]4. In this case by also
e (VW.0;,m) € [B]v
e (V,W.02,m) € [Bly
Because p’ [Z A this suffices to show the goal.

Lemma 8.32. If (’Y,W7 m) S ﬁﬂ]{}, then (yl,W.el,m) € |—r‘|\7 and (yg,W.Gg,m) S fr—‘v
Proof. Let (y,W,m) € [T]#. We have to show

e (y1,W.01,m) € [T]y. We have to show

— dom(T") € dom(yi1). Because (y,W,m) € [T]# we know dom(T') C dom(y) = dom(y1) N

dom(yz) € dom(y1).

— ¥x € dom(T).(y1(x), W.0;,m) € [T(x)]vy. Let x € dom(T'). Then, because (y, W, m) € [T]¢,

we have (v1(x), va(x), W, m) € [F(x)]4. By (v1(x), W.81,m) € [T(x)]v.

e (y2,W.05,m) € [T]v. Analogous to the previous case.

Lemma 8.33. ((Zl U Z—)))A = ((Zl))ﬂ U (Z_})A
Proof. C: Let 0 € (Z1UZXZ3),. Then

— pol(o) E A and
— 0c€ Zl U ZQ.

If 0 € X4, then 0 € (£1) 4 and hence 0 € (X1) 4, U (Z2) 4. Alternatively if o € Xo, then o € (£3) 4 and

hence o € (Z1) 4 U (Z2) 4.
J: Let 0 € (1) 4 U (Z2) 4. There are two cases:

1. o€ (Z1),: Then
—0€X;
— pol(o) C A.
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Then also 0 € £; UX, and hence 0 € (I UZy),.
2. 0 €(Z1)y: Then
— 0E€ Xy
— pol(o) C A.
Then also 0 € Z; U Xy and hence 0 € (£ ULy) 4.

8.4 Fundamental lemma for the binary relation

Lemma 8.34. If (e,e’,W,> U{c},2' U{o},m) € [T]¢ and = a4 ', then (e then unopen o,e’ then
unopen o, W, 2,5/ m) € [T]£.

Proof. By induction on m. It suffices to show (opened o in e,opened o in e/,W, %, L’ m) € [t]£. We
already know Z =4 L’. Let X1, X5 such that

[ IPERSD
e JXyD X/,

o 1~y ko,
W’ m’ such that
em' < m,

e W IW,

and S, Sy such that
o (51,5, m) B W
There are two cases:
1. (e,e/,W,ZU{o},Z'U{c},m) € [f’tﬂﬁﬁ. Clearly the following is true:

e X U{o} D XuU{o},
e Y oU{0o} D X' U{o} and
° Zlu{()'}"&iﬂ ZQU{O'}.

Hence there are three further options:

€1 ¢ VA (] ¢ AVAVAN
Vei,S1, 11, w,e5, 25,85, w'.
YiU{o}tF ey, S1 SN el, SI A

(a) (e,e’) €< (e1,e2) | ZoU{o}F eq, So % e}, S, —

(w z(}v,.ﬁ W VI CAVIICA)—

IWTWY IWA (S],S4,m) B (W) A

W=y g w' A (ef,e5, W 2U{o}, 2 U{o},m') € [T]¢
In this case it is suffices to show

e dV A ed VA
Vei,S1, 2], w,eh, ), S5 w.

Si ke, St 2L el SIA

(opened cine,openedoine’) € < (e1,e2) | 7.+ ey, Sy % e}, Sh—

(Way g W VI CAVI,EA) =
IWTW IWIA (S],85,m!) B (W) A
Wy g WA (ef,e5, W, 2,5 m!) e [t]¢

It is clear that neither opened o in e nor opened o in e’ is a value. Solet w, w’, eg, eé ,21,245,81,S)
such that

e opened o in e, Xy,5; > ep, S{, w, L]
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e opened oine’, Xy, Sy >~ eé,Sé,w’,Zé
By assumption neither e nor e’ is a value. Hence the reductions must have happened with
Eopened. Hence by inversion
e e, X U{o},S1 > e, S|, w, X}
o e/ YyU{c},S2 > e),Sh,w’, X}
e ¢ =opened o in ey
e ep =opened o in e}
Hence we know
e w Ay @ VI CAV S5 CA - IWW I WA (S, Spm) EW A w &y,
w’ A (eg,ef, W ZU{o}, L' U{o},m') € [t]¢
It suffices to show the following:
o w z{}\/,ﬁ Ww'VIICAV ZSCA—=IW W JW A(S,S;,m) EW’ A w E{}V”-B
w’ A (opened o in eg,opened o in e}, W” £, £’ m’) € [t]¢.
Let w %éva[s w’or 2] C A or XJ C A. This directly gives us a W such that
=\
~ (S1,85,m) B W”,
- W&y, z w’, and
— (eo, ef, W", L U{o},Z' U{o},m') € 7]
It suffices to show
— W"” JW'. We already know that.
- (S41,S84,m") 2 W’ We already know that.
- w &{}V,,'B w’. We already know that.
— (opened o in ep,opened o in ej), W’ £, £’/ m') € [t]# We get this by induction.
e1 ¢V AVey,S1, 2], w.

S U{ohF er, S1 = ef, ST —(pol(w) T A) A
(eae/) € (61762) A
FEW"W"” JW’' A (S],So, m') > (W) A
(e{7eQaW”7ZU{G}7ZI U{G}7m,) S ”—T—”‘é)
In this case it suffices to show
e1 ¢V AVei, S|, 2], w.

) o, Y l—ehSl%e{,S{%ﬁ(pol(cu)EA)A
(opened oine,opened oine’) € < (e, e2)

EW”W” JW' A (S],So,m’) & (W) A
(eiv 627WH7 Za Z/a m/) S n—T‘ﬂ‘é)
It is clear that opened o in e is not a value. So let w, eg,X{, S| such that

e opened o in e, ;1,51 > e, S{, w, L]

By assumption e is not a value. Hence the reduction must have happened with Eopened. By
inversion

e e X U{0o},S1 > eq, S|, w,X{
e ¢g =opened o in ey
Hence
e ~(pol(w) E A)
and there is an W’ such that
o W' OIW
o (S/,S5,m') bW
e (eg, e/, W" L U{o}, 2 U{o},m') € [T]#)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.

e (S1,S2,m’) EW”. We already know this.
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e (opened o in eg,opened o in e/,W” £, £’ m’) € [t]#. We get this using the induction
hypothesis.

e &V AVel, S 1) w.

S0 U{0}F €2, So s el Sh — —(pol(w) T A) A

(BW".W"” 3 W' A (S1,S4,m/) & W” A

(617 eéa WH? ru {G} ’ 'y {G} ’ m/) € ”—T—”{:IJ

In this case it suffices to show

(c) (e,e’) € < (e1,e2)

es ¢V AVel,Sh, I, w.

. , To b es, So 2t eh Sh s —(pol(w) T A) A

(opened oin e,opened cine’) € < (e, e2) u
AW W W' A (S1,S5, m") > W A
(er,es, W 2,5/ m') € [t]£)
It is clear that opened o in e’ is not a value. So let w’, eé7Z§7 S5 such that

e opened oine’, L5, Sy = eé,Sg,w’,Zé
By assumption e’ is not a value. Hence the reduction must have happened with Eopened. By
inversion

e e XyU{0},S2 > e}, Sh,w’, 2

e ¢; =opened o in e}
Clearly 5 U{c} D L’ U{0}. Hence

e —(pol{w) C A)
and there is an W/ such that

o« W/ IW

o (S1,SL,m/) b W"

e (e,e0, W, 2 U{o}, 2 U{o},m') € [1]{)
It suffices to show the following:

e —(pol(w) C A). We already know this

e W’ JW’. We already know this.

A
e (51,85, m") > W”. We already know this.
e (opened o in e,opened o in e}, W”, £, £’ m’) € [Tt]£. We get this using the induction
hypothesis.

2. (67 6/7W7Z U{o—},zl U{U}7m) € {(V7VI7W5 ZC17ZC27m) | (V,V’,W, m) S "VT-”{?{}
In particular this means that there are v,v’ such that e = v and e’ = v’. In this case it suffices to
show

e1 &€V N eag VA
Vei,S1, 2, w, el 2L, S5 w'.
S ke, S —==¢e], S| A
(opened o in v,opened o in V') € < (e1,e2) | 7, F ey, Sy ; ey, Sh—
(wafy g W VI EAVI,CA) —

A
IW W IWA (S1,Shm!) B (W) A
Wy g WA (ef,e5, W, 1,5/, m') € [t]¢
It is clear that neither opened ¢ in v nor opened o in v’ is a value. So let w, w’, e, eé,ZL ¥, 81,84
such that

e opened o inv,%q,51 > e, S{, w, L]

e opened 0 in v/, 3,52 > ep, S5, w’, )

By assumption both e nor e’ are values v and v’, respectively. Hence the reductions must have
happened with EopenedBeta. Consequently

® e =V
e cp=V
° S{le
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e S/ =5
e w =unopen(o) = w
e X=X,
e X =13,

/

Hence the reductions are really
e opened o inv,%;,S; > v, Sy, unopen(o), I,
e opened o in v/, I, Sy > v/, Sy, unopen(o), Xy
It suffices to show
e unopen(o) %ﬁ,,.ﬁ unopen(oc) VI, CAVI; C A — IW' W' I W A(S1,S2,m’) Ewr A

unopen(o) E{}v”_ﬁ unopen(o) A
(v, v/, W"” £ 5" m’) € [t]#. It suffices to show the conclusion. In particular it suffices to show

— W' JW’. We get this by
— (81,82, m’) Ew. We already know this.
— unopen(o) Eﬁ,,'ﬁ unopen(o). We get this with refl.

- (v,v W', 5.5/ m') € [t]f. We already know (v,v/,W,m) € [t]#. By |[Lemma 8.24| and
Lemma 8.25( we get (v, v/, W/, m’) € [t]5 which implies the subgoal.

O

Lemma 8.35. If (e,e/,W,> U{o},2' U{o},m) € [t]¢ and © ~,4 %', then (open o in e,open 0 in
e’,W,2, 2/ m) e [t]£.

Proof. To show this it is sufficient to show (open o in e,open ¢ in ¢/,W,X m) € [fﬂ]éﬁ. We already
know L ~4 X’. Let £, %5 such that

e X, D%,
e X1, D1,

o X~y ko,
W’ m’ such that
e m’ <m,

e W W,

and S, S, such that

o (S1,Sp,m/) B W',

. It suffices to show

e1 €V N eaéVA
Vel,S1, 2], w,es, 24, S5 w.

TiFep, St ==¢], S| A
(open o ine,open oine’) € | (e, ea) | 5,k ey, Sy === e}, S, —
(w %(,qv,.ﬁ WVIICAVIICA) —
A
IW' W IW'A (81,85, m) > (W) A
w E.\ﬁ/”.ﬁ w’ A (e{,eé,W”,Z,Z’,m’) € H—T—”‘EA
It is clear that neither open o in e nor open o in e’ is a value. So let w, w’, e[g,eé, X1, X5, S1,S) such that

e openoine,I;,S; > epg,Si,w, L]
e opencoine’ Xy, Sy = eé,SQw’,Zé
The reduction must have happened with Eopen. Consequently

e eg =openedoine
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e ¢ =opened oin e’

e S =5
e S, =S,
e w=open(o) =w’
o3 =5,
¢ T)=13,

Hence the reductions are really
e open o ine,X;,S; = opened o in e, Sy, open(o), X,
e open o in v’ Xy, Sy = opened o in e’,S,, open(o), Xy
It suffices to show
. openEU) ~t, 5 open(o) VI CAVEy CA = IW/ W IW/A(Sy,S2,m') b W” Aopen(o) 24,
open(o) A

(opened o in e,opened o in e/, W”, £ £’ m’) € [t]#. It suffices to show the conclusion. In
particular it suffices to show

— W' 3 W’. We get this by

— (S1,S2,m’) EW . We already know this.

— open(o) &‘j}V’-B open(o). We get this with refl.

— (opened o in e,opened o in ¢/, W/, £, 5’ m’) € [t][#. By assumption we have (e,e’, L U
{o},Z' U{o},W, m) € [t]#. By |[Lemma 8.24] and [Lemma 8.25| this gives us (e,e’, L U{o}, L' U
{o},W’',m’) € [t]£. We get the remaining subgoal with [Lemma 8.34}

O

Lemma 8.36. If (ej,ef, W, 2,2/, m) € [1,]# and (e, e5, W, 2,2/, m) € [15]¢, then
((617 eZ)a (e{a eé),W,Z,Z/,TTL) S W(Tl X TQ)l‘"é'

Proof. By induction on m. There are two cases:
1. (e1,e], W,L,Z'm) € H—Tl-ﬂéﬁ. In this case it suffices to show ((ey,ez2), (e],e5), W, X, X'm) € (1 x
Tg)l-ﬂéﬁ. We get £ ~4 L/ from (eq,e], W,Z,L'm) € [[Tl]]fﬁ. Let X, X5 such that
L4 Z1 2 Z7
L4 ZZ 2 Zlv
° Zl NA 227

W’ m' such that

e m’' < m,
e W IW,

and Sq, S such that

A
° (Sl, SQ, m’) > W',
. There are three further cases

er ¢V N e g VA
Vel,S1, 2, w,es, 2L, S5 w.

IO
w;X]

2 |—€1731:>€{,S{/\

ey
w’; Xl

(a) (e1,e1) € q (e1,€2) | I,k ey, Sy === e}, S} —

(wafy g W VI EAVI,CA) =
IWTWY IWA (S],85,m) B (W) A

w g\f/\l/”.B (U//\ (e{,eé,W”,Z,Z’,m’) € WTlﬂél
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In that case it suffices to show
e1 gV N e g VA

/ !/ / / / / !/

Vel,Sl,Zl,w,eQ,Zz,SQ,w .
w;X] , ,

2 keq, N — €, Sl AN

fos
w’; X

((e1,e2),(e],e3)) € { (e1,e2) | 5, F e, Sy ——= e}, S, —
(w %{,qv/.ﬁ W VIICAVIICA)—

A
IW' W IW'A (S1,S5,m") > (W) A
W&y g WA (ef,e5, W, 2,5/ m') € [(11 x 1) ¢
By assumption neither ej, nor ef is a value. Hence (e1,e2) and (ef, e)) also are not values. So
let w7w’,eg,eé7Z{,Z§,S{7S§ such that

L4 (elaeQ)azlasl > eﬁasiawazi
hd (e{,eé),ZQ,SQ - eéaséawlvzé

Since neither e; nor ef is a value, the reductions must have happened with EPairl. Hence by
inversion

/ /
o elazlvsl - elashwazl

° e/,ZQ,SQ b e{,Sé,w/,Zé
e ep = (e, e2)

I (! o
L4 6[5 - (61,62)

Also let w z(,{v,_ﬁ w'VIICA V i C A We know there is a W’ such that
o« W/ O W

A
(S1,S5,m') > W”

[ ]
o Wy w
L4 (6176{7W/I7Zazlam/) € "—Tl‘”‘é

It suffice to show the following:
e W’ J W’ We already know that.

(S1,S5,m") EW”. We already know that.

o WAy, g w'. We already know that.

((e1,e2), (e, e5),W", Z,m’) € [(t1 xT2)1]¢ We have W” J W by transitivity (Lemma 7.2).
Hence we also have (e2,es, W”, 2,5/ m/) € [12]¢ by [Lemma 8.29, We get the claim by

induction.

e1 ¢V AVei,S1,2, w.
S Fer, Sp =l el 81— —(pol(w) C A) A
(e1,e1) € 4 (e1,e2) M
AW’ W"” JW' A (S],S2,m/) > (W) A
(617627W”7232/am/) S WTlﬂél)
In this case it suffices to show ((e1, e2), (e],e5)) €
e1 ¢V AVel,S1,2, w.
Sk er, S = e, 81— —(pol(w) £ A) A
EW7W"” JW' A (S], S5, m) & (W) A
(617627w//a272/3m/) S H(Tl X TQ)lﬂé)

(e1, ez

By assumption e is not a value. Hence (eq, e2) also is not a value. So let w, eg, X1, S{ such that
L (ela 62), Z17 Sl > 6[37 S{a w, Z{

By assumption e; is not a value. Hence the reduction must have happened with EPairl. By
inversion

e e,X,51 > e,S,w, X}
e eg = (e, e2)

From our assumption we get
e —(pol{w) CA)

and there is an W/ such that
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e W/ IW
o (S/,S5,m') bW
o (e, e], W' L2 m') e [t]d)
It suffices to show the following;:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.

e (51,52, m’) Ew”. we already know this.

4 ((617 62)7 (eiv eé)v Zv Z/am/) € W(Tl X 'TZ)L A' We know (817 ei7WN7 Zv Z/a m/) € "—Tl-ﬂft) We
get (e2,e5, W’ L, 5/ m') € [12]¢ by [Lemma 8.290 The goal follows using the induction
hypothesis.

ex €V AVel, S5 w.

, To b g, So 2ty e Sh s =(pol(w) T A) A
(C) (61761) € (61762) A
FAW” W IW' A (51,85, m") > W A
(er1,e5, W, 2,2/, m/) € [ ]#)
In this case it suffices to show ((e1, ez), (e],e})) €
es &V AVe,, SL 2L w.

To b e, So 2t eh Sh <5 —(pol(w) T A) A
(e1,e2) A
FAW’" W 3JW’' A (S1,S5, m") > W" A
(er,ed, W 2 57/ m') € [(11 x T2)1]#)
By assumption e] is not a value. Hence (e, e5) also is not a value. So let w, eé,Zé, S4 such that
e (e],€3),22,52 = ep, S5, w, L)
By assumption e] is not a value. Hence the reduction must have happened with EPairl. By
inversion
e e,X5, Sy~ e[,S5 w, L)
e ep = (e[, e3)
From our assumption we get
e —(pol{w) C A)
and there is an W’ such that
o W' OW
o (S1,S,,m/)EW”
o (e, ef, W' 5,2/ m') e [t]f)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.

e (54,S4,m’) s W’ . We already know this.

e ((e1,e2),(ef,e5), S, 2", m') € [[(t1 x T2)1]¢. We know (e1,e{, W’ £, £/ m') € [1,]#). We
get (e2,e5, W .5/ m') € [to]¢ by [Lemma 8.290 The goal follows using the induction
hypothesis.

2. (elae{awvzazlam) € {(v,v’,W,Zl,Zg,m) | (\),V’,W,m) € WTlﬂ‘\/}}

Hence e; and e} are values v; and v}, respectively, and (vq,v], W, m) € [11]%. There are two further
cases:
(a) (eq, e, W, L, 2. m) € [[Tgﬂﬁlﬁ. In this case it suffices to show ((vi,e2),(vi,es), W, X X'm) €
M(ty x Tg)lﬂﬁﬁ. We get £ ~4 L/ from (es,es, W, L, 5'm) € [[Tﬂ]éﬁ. Let X;,X, such that
e XD,
e X, DY,
o I~y Lo,
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W', m’ such that
e m' <m,
e W W,

and Sy, Sy such that
o (51,5, m)EwW.

There are three further cases:

gV A e dVA
Vel,S1, 2, w, ey, 2L, Sh w'.

Siken, St e, LA

i. (e2,ep) € q(er,e2) | 7,k ey, So LCNEE N e, Sh—

(WAl s 0/ VI CAVI,CA) -
IWTWT IWA (81,85, m) B (W) A
Wy g WA (ef, ey, W, 1,5/ m') € [r]¢
In that case it suffices to show

e1 gV N e g VA
li ! !/ ! / i !/
Ve1,S1, 21, w,eq, 25, S5, w’.

SoFer, S1 =k el SIA

((vi,e2),(vi,e5)) € < (e1,€2) | I,k ey, Sy ENEN e}, Sy —

(w zﬁ/,ﬁ w' VI CAVIICA)—

IWTWT IWIA (S],85,m) B (W) A

Wy g WA (ef,e5, W 11 m') € [(11 x T2) ¢

By assumption neither eq, nor e} is a value. Hence (v, e2) and (v, e}) also are not values.
So let w, w’, eg, eé,Z{,Zé,S{,Sé such that
° (vl,eg),Zl,Sl b eB,S{,w,Z{
° (Vi7 65)7 ZQ, 82 - 6;5,55, (i)/, Zé
Since v and v{ is are values but es and e} are not, the reductions must have happened with
EPairr. Hence by inversion
. 62721751 - eT,S{, (,U,Zi
e, Xs,Se = el,Sh w! I}
eg = (vi,er)
e ep = (vi,e)
Also let w R:{,lv,_ﬁ w'VEICA V XL C A. Then there is a W” such that
e W/ JIW,
(S],S5,m') b W,
o Wy, g w, and
e (er,el, W L5 m')e [r]f
It suffices to show
e W/’ JW’. We already know that.

(S1,S4,m") EW” . We already know that.
o Wy, g w'. We already know that.
(vi,er), (v5,el), W L. 2/ m') € [(t1 X Ta)T ¢ We have W” I W by transitivity
. Hence we also have (vi,vi,W” £ £/ m') € [11]¢ by We
get the claim by induction.

e;1 ¢V AVei,S], 2, w.

.Y/
w;X ]

Yike, St ==v¢{, S| = —(pol(w) TA) A

(AW W" JW' A (S],Ss,m) & (W) A
(617627W”>Z7zlam/) S WT2ﬂé)

ii. (ez,e3) € < (e1,e2)
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iii.

In this case it suffices to show
e;1 ¢V AVey, S|, 2], w.

(vrves)s vfrep)) € { feres) | 10 S T eb S TR EAIA
FW" W JW' A (S],Se, m") > (W) A
(e1,e2, W 52,5/ m’) € (11 x t2)1]¢)
By assumption es is not a value. Hence (v1,e2) is not a value, either. So let w,eg,Z{,S]
such that
o (vi,e2),%1,51 > ep,S1,w, 1]
By assumption vy is a value but e, is not Hence the reduction must have happened with
EPairr. By inversion
® e3,X1,51 eS|, w, X
e eg = (vi,er)
From our assumption we get
e ~(pol{w) C A)
and there is an W/ such that
o« W/ IW/
o (5],S2,m) bW
o (e,el, W L 5/ m')e [12]f)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ O W’ We already know this.

e (S1,S2,m’) EW”. We already know this.

o ((vi,er), (vi,e}), L, 2/, m’) € [(t1 x T2)L]#. We know (e, e5, W’ £ £/ m') € [12]#).
We get (v, vi,W” 2.2 m') € [t.]¢ by |[Lemma 829 The goal follows using the
induction hypothesis.

ea &V AVel, SL, 2] w.

Tokeo, Sy LN e}, Sh — —(pol(w) T A) A

(BW".W"” I W’ A (S, 84, m/) & W” A

(61, eé, WNa Zv Z/v m/) S WTQH‘Q)

In this case it suffices to show ((v1,e2), (v{,e})) €

es &€V AVel, S5 T w.

So F eg, Sp =2 e S5 — —(pol(w) C A) A

(e2,e5) € ¢ (e, e2)

e, e
e EW”.W"” JW' A (Sy, S5, m/) & W” A
(e1, ey, W 2.5/ m’) € (11 x t2)1]¢)
By assumption e/ is not a value. Hence (v{,e}) also is not a value. So let w, e}, X}, S) such
that
o (vi,e5), 22,82 > eé,SQw,Zé
By assumption vj is a value but e} is not. Hence the reduction must have happened with
EPairr. By inversion
e e} Y5,Sy = el,S) w,X)
o efg = (V{v eé)
From our assumption we get
e ~(pol{w) E A)
and there is an W/ such that
e W/ IW
o (S1,5p,m) bW
o (ex,el, W/ L 5/ m') € [12]f)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ J W’ We already know this.
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e (54,84, m’) EW”. We already know this.
L4 ((v17e2)7 (v{,ei),Z,Z’,m’) S ”—(Tl X TQ)L-H{'_{' We know (627e‘:'7WN?

X m') e ”—Tg-ﬂ‘é.

We get (vi,vi,W” £, £’ m') € [11]¢ by [Lemma 829, The goal follows using the

induction hypothesis.
(b) (627 eé,W, Z) Zlv m) S {(V,V’,W, ZC17 ZCza 7m) | (V,V’,W, m) S ”—TQ-"‘\/;}

In this case e; and e} are values vy and v}, respectively, and (v, v, W, m) €

[T2]%. It suffices to

show ((v1,Vv2), (v{,v),W,m) € [(t1 x T2)1]#. Because L C A (Lemma 4.19)), it suffices to show
((vi,v2), (vi,v5),W,m) € [11 x T2]4. To show this we need to show (vi,v], W, m) € [t1]# and

(v2, v}, W, m) € [12]% both of which we have already.

Lemma 8.37. If (ey,el, W, 5,5/ m) € [(t; —=5 1,)974 and (es, €}, W, 2,5/, m)
Y €2 and g Cp, qC T and ~ a4 2/, then (e eo,e] €5, W, 2,2/ m) € [to]¢.

O

€ WT'I-H{»:l and ~ D

Proof. By induction on m. It suffices to show (e; ez, e] ef, W, L, L' m) € [[Tg]]éﬁ. We already have £ ~4 L'

by assumption. Let X, X5 such that
X012,
e, D1,
o X~y ko,
W’ m’ such that
em' < m,
e W OW,

and S, Sy such that

A
L d (Sla Sva/) > W’
There are two cases

1. (e1,ef, W, L, 2/, m) € [(1rs EmgP Tg)q—”‘éﬁ. There are three further cases:

e1 ¢V N e g VA
Vei,S1, 2], w, ey, 24, S5, w.

D
Sibep, St ==>¢e|,S| A

(a) (er,e1) € < (e1,e2) | Zobea, Sy L, e, Sy —

(w x(,lv,,ﬁ WVIICAVIICA)—

IWT WY IWA (S],S4,m) B (W) A

w E(}V”,ﬁ w/' A (ef,el, W' 5 7' m') e [(n FmgP To)
In that case it suffices to show

e1 €V N eag VA

Ve1, Sy, 2], w, el 2, S5 w.

w; ]

2 |—€1,S1:>e{,5{/\

(e1 ez, e1 ey) € < (er,e2) | 7,k es, Sy LU——:—> e}, S, —

(WY g W' VIIEAVIIEA) —

IWTW IWA (S],85,m) B (W) A
Wy g WA (ef,e5, W', 2,5/ m') €[]

T

Neither e; e nor eq e} is a value. So let w, w’, eg, eé,Z{,Zé,S{,Sé such that

/ /
® € eZazlasl > eﬁushwuzl
° e{ 65,22,32 - eé,Sé,w’,Zé

Since neither e; nor ef is a value and therefore also not a function, the reductions must have

happened with EAppl. Hence by inversion
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e e;,%,51 = e, S],w, X
o e[,%5,Sy = ¢],S5, w1
e ep=ceLe
°eep=c¢[e
Also let w %(,qv/.ﬁ w'VIICA V EZfC A This directly gives us a W” such that
o« W' IW/,
o (S],S5,m)EwW”,
* W=y, s w, and
o (en,el, W' £, 5 m) € [t = 1)9]8
It suffices to show
e W/’ JW’. We already know that.
e (S1,S4,m) EW”. We already know that.
o WA, g w'. We already know that.
o (e ez,e[ e, W L 5/ m') € [12]# We have W” J W by transitivity . Hence
we also have (ez, e}, W £, £/ m’) € [t1]¢ by We get the claim by induction.
e1 ¢V AVei, S, 21, w.

Sk e, S e, S —(pol(w) T A) A
(b) (e1,e1) € ¢ (e1,e2) A
AW W’ IW' A (S, S, m') B (W) A

(
(e{,eg,W”,Z,Z/,m') S ”—(Tl EmgP T2)qﬂ€)

In this case it suffices to show
e1 ¢V AVei, S|, 2], w.

Sk en, S1 =2l el 8! s —(pol(w) T A) A

(EW”W"” JW' A (S],Sy,m') g wn A
(ef,e2, W, 2,2/, m') € [12]¢)

(e1 ez, €1 ey) € < (er,e2)

It is clear that e; ey is not a value. So let w, eg, X1, S{ such that
® ¢ 62521781 - eBaS]{awaZ{

By assumption e; is not a value and therefore also not a A-expression. Hence the reduction must
have happened with EAppl. By inversion

L elazlasl > elasi7wazi

® €3 =€ €2

From our assumption we get
e —(pol(w) CA)

and there is an W such that

o« W' IW

o (S].S2m/) B W

hd (617 617 WN) Z7 Zlv m/) € W(Tl Emgp T2)qﬂ€

It suffices to show the following:

e —(pol(w) C A). We already know this

e W/’ JW’. We already know this.

e (51,52, m’) EwW”. We already know this.

o (e ex,e] €5, L2/, m') € [12]#. We know (e, el, W, £,£' m') € [(1y EmgP To)9T£. We
get (eg,es, W .5/ m') € [t1]¢ by [Lemma 8.290 The goal follows using the induction
hypothesis.

es €V AVel, S5 7L w.

, Iokeg, So Lty ey, S, — —(pol(w) C A) A
(c) (e1,e1) € ¢ (e1,e2) e / A
(FW”W” JW' A (81,85, m') > W A

Zm)
(elveé7wuvzaz/aml) S ”—(Tl _>p T2)q-ﬂ‘é)
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In this case it suffices to show (e; eq, e] e}) €
ea €V AVe,, S5 T w.

e ey | T2Fe S s el SL = (pol(w) T A) A
€1, €2
(AW W 3 W' A (Sy,S5,m') & W A
(el7e§,W”7Z,Z/,m’) S WT2ﬂ€)
Clearly e e is not a value. So let w,eg;, L3, S5 such that
® eje)Xo Sy ep, 55w, 1)

By assumption e] is not a value and therefore also not a A-expression. Hence the reduction must
have happened with EAppl. By inversion

e e,25, Sy~ e[,S5 w, L

°ep=c¢[e
From our assumption we get

e ~(pol(w) C A)
and there is an W such that

e W'IW

o (S1,SL,m/) b W”

o (e, e, W, L5/ m') € [(r "= 1,)a]4
It suffices to show the following:
—(pol(w) C A). We already know this
e W’ JW’. We already know this.

(S1,S5,m’) Ewr. We already know this.

(e1 e, ef €5, Z,m') € [12]f. We know (er, e[, W” .2’ m') € [(t; EmgP To)9]E. We
get (e2,es, W .5/ m') € [t1]¢ by [Lemma 8.291 The goal follows using the induction
hypothesis.

2. (elae{7W7Z7Z/am) S {(V7V/aW7 ZCNZC27m) ’ (V,V/,W, m) S ”—(Tl FmgP T2)q-""\/7l}

. P .
Hence e; and e are values v; and v/ respectively such that (vi,v{, W, m) € [(1; L To)9]%. Either
T, .
qC AorqlZ A In the first case (vi,v),W,m) € [1; =" 1,]¢ and in the second case both

Z‘Tl) zm’ .
(vi,W.01,m) € [T meP o]y and (v, W.03,m) € [14 meP T2]v. In both cases this means that there

are ep and ef such that
e ) = Ax. ep and
o e =Ax. e}.
There are again two cases
(a) (e2, €4, W, X, 2/ m) € ﬂ—Tlﬂ“Eqﬁ. There are three further cases:

el gV A e d VA
Ve, S1, 21, w,ep, 25,85, w'.

Sibep, S —==el, S| A

. ’ w’;Z) , ,

i. (e2,e9) € < (e1,e2) | =,k ey, Sg == €5, S) —

(w z\f}v,_ﬁ W' VIICAVIICA) —

IWTWY IWA (S],S5,m) B (W) A
w E‘/Vk/”‘ﬁ w’' A (e{,eé,W”,Z,Z/,m’) € H—Tl—"é
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il.

In that case it suffices to show
e1 ¢V N e g VA

Vey,S1, 2], w,eb, 2, Sh w’.
Siken S s el I A
(Ax. ev) ez, (Ax. ef) e}) € { (e1,€2) | T, F en, Sy~ eh, SL —
(Way g ' VIICAVI,CA) —

IWWT IWIA (S],Shm!) B (W) A
w &(}v”ﬁ W' A (ef,el, W 2 5/ m') € [t2]f

Clearly (Ax. ep) e2 and (Ax. ef,) e} are not values. So let w,w’,eg,eé,Z{,Zé,S{,Sé such
that
o (Ax. ep) €2,Z1,51 > ep, S, w, X}
o (Ax. ep) e}, 29,Ss >~ eé,Sé,w’,Zé
Since ey and e are not values by assumption, the reductions must have happened with
EAppr. Hence by inversion
® e,%,5 =e,S|,w, X
e e}, Y5,Sy e, Shw' X
o eg = (Ax. ep) er
. eé = (M. ef) el
Also let w %\j}V’-B w'VEIICA V Xl C A This directly gives us a W” such that
e W' W/,
o (S],Spm)EW”,
o WAy, g w', and
e (er,el, W/ L5 m')e[r]f
It suffices to show
e W’ J W’ We already know that.

(S1,S5,m") EW”. We already know that.

w &{}V,,'B w’. We already know that.

(Ax. ep) er,(Ax. e]) e[, W £,/ m') € [12)]# We have W” J W by transitivity
Lemma 7.2)). Hence we also have (Ax. ep, Ax. ef,, W’ Z, /. m’) € (11 EmgP To) 9]¢ by

emma 8.29] We get the claim by induction.
e1 ¢V AVei, S|, 2, w.

/

e er) e (er ey | T en St el ST o —pollw) CA) A
2 2 1,€2
EW7W" JW' A (S],Ss,m/) & (W) A
(], e, W, 5,5/ m') € [T 1)
In this case it suffices to show
€1 ¢ V AVe{, i?ziuw~

Liker, S %e',s/%—' hol(w) C A) A
(Ax. ep) ez, (Ax. ef) ej) € { (erea) | 7 1 S = (pol{w) £ A)

BW W’ I W' A (S],S2,m') b (W) A
(ef,e2, W 2,5/ m’) € [ta]¢)
It is clear that (Ax. ep) eq is not a value. So let w, eg,X],S] such that
o (Ax. ep) €2,X1,S1 > ep, ST, w, L]
Because e is not a value the reduction must have happened with EAppr. By inversion
e, %,5 =e,S],w, X}
e eg = (Ax. ep) er
From our assumption we get
e ~(pol(w) C A)
and there is an W’ such that
o« W/ IW/
o (S, Sy,m) bW
o (er,eb, W/ L5/ m')e [t]f)
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It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ O W’ We already know this.

e (51,52, m’) EW”. We already know this.

o ((Ax. ep) er, (Ax. ef) €5, 2,5/, m/) € [1a]¢. We know (er,ef, W’ £,/ m’') € [t1]#).
We get (Ax. ep,Ax. e, W” L, 2/ m/) € (7 EmgP T2) 94 by The goal
follows using the induction hypothesis.

ea &V AVel, S, 2. w.

i, (esel) € d (enen)| 0 =i e, Sh— —(pol(w) T .A) A
iii. (e, e ey, e
(BW".W"” I W’ A (S1, 84, m/) & W” A
(e1,e5, W", 2,2/, m) € [t,]¢)
In this case it suffices to show
e2 ¢ V AVes, S5, 55, .

w;T) roQ
(A en) 2, (Wx. el) €}) € < (er, e Yok eq, So =—=¢€}, S5 — —'(pjl(cu) CA A
EW”"W”" IJW' A (S1,85,m") > W' A
(e, ey, W 2,7/ m’) € [ta]¢)
It is clear that (Ax. ey,) ej is not a value. So let w, ep, X5, S5 such that
o (Ax.ep) e3,%2,52 = e;, S5, w, L5
Because e} is not a value, the reduction must have happened with EAppr. By inversion
e e}, X9, Sy el S, w, X}
o ep = (Ax. ep) e
From our assumption we get
e ~(pol(w) E A)
and there is an W/ such that
o« W/ IW/
o (S1,8),m/) b wW”
o (ez,el, W/ L 5/ m') e [ti]f)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.

e (54,84, m’) SW”. We already know this.
o ((Ax. ep) e2,(Mx. ef) el, L, 5/, m/) € [T2]f. We know (ez, e/, W”, .5/, m') € [11]¢.

We get (Ax. ep,Ax. ep, W” L. 2/ m') € [(my EmgP T2)97¢ by [Lemma 8.29 The goal
follows using the induction hypothesis.

(b) (eQaeé,Waz7Z/am) € {(V,V’,W, ZC7m) ’ (\17\1/,W, m) € WTlﬂ‘G}

In this case es and e} are values vy and v}, respectively, such that (ve, vy, W, m) € [11]4%.

It suffices to show ((Ax. ep) va, (Ax. e})) V) €
er &€V N ea & VA
Vei,S1, 2], w,es, 24, S5 w.

Sibep, Sy =>¢e], S| A
(e1,€2) | T, F ey, Sy === e}, S, —
(w %{}V,.B W VIICAVIICA)—

IWTWT IWA (S],S5,m) B (W) A
W &ﬁ/,,_ﬁ W' A (ef, e, W 1 5/ m!) €[]

It is clear that both (Ax. ep) vo and (Ax. ef) v4 are not values. So let w,w’, eg, eé,Z{, ¥, 81,84
such that

o (Ax. ep) v2,Z1,51 > ep, S, w, X]
o (Ax. ef) V5, X9, S9 > eé,SQw’,Zé
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Since vo and v} are values, the reductions must have happened with EAppBeta. Hence

® €3 — [Vz/X]eb
° eé = [vy/xleq,

o w=¢ec=w’

o S{le
e S/=5,
e X=X
e X =1,

So the reductions are really
e (Ax. ep) v2,21,S1 = [vo/xlep,S1,€, X1
o (Ax. e}) V5, Lo, S = [vy/xlel, Sa, €, Lo
Also let € %@,‘B eVI;CAVI,CA.
It suffices to show

e W/ O W', We get this by

e (S1,S,,m’) Ew. We already know this.

®c &ﬁ/,_ﬁ €. We get this with refl.

o (va/xlep, vy/xley, W/, L, I/, m/) € [t
By assumption (vo, v5, W, m) € [11]% and W’/ J W. Hence by|Lemma 8.24|and [Lemma 8.25|
also

- (V%vé,W',m’) S "—Tl—”‘\/?l’
There are two cases:
i. q C A: In this case (Ax. ep,Ax. e}, W, m) € [1; EmgP To 4. Because W JW, m’ < m,
(vo, v, W m/) € [11]4, £ 2 Zn C L/ and £ ~y4 I, this gives us
— (va/xlew, vy/xlep, W/, L2/, m/) € 1]
ii. q Z A: In this case

— (}\X eb,W.el,m) € ’—Tl Z"—1>7p T2—|\7

— (A el W0y, m) € [t P 1]y
By it suffices to show
— ([vg/x]eb,W’.Gl,m') € ’VTQ—IE.
From (v, v5, W/ ,m') € [1,]5} we get
= (vz,W’.Gl, m’) S |_T1-‘\7
by Because W/ J W we have
= W’.91 Q W61
in addition to
= om' <m
which we know anyway. The goal follows directly from (Ax. ep, W.01,m) € [19
T2~|\7.
— (vy/xlef ,W" .05, m') € [12]%
From (ve,vs, W/ m') € [1,]5 we get
w (Vi W.0,m') € [T1]v
by Because W/ J W we have
= W/.eg Q W92
in addition to
o om/ <m

T, P

which we know anyway. The goal follows directly from (Ax. e[, W.02,m) € [1q EmgP
TQ‘IV.

— 1o £ A. Assume 19 C A. Because q C 15 we get q C A by transitivity (Lemma 4.1)).
But q Z A. £

—pZ A. Assume p C A. Because q C p we get q C A by transitivity (Lemma 4.1J).
But q Z A. ¢

O

Lemma 8.38. If (e,e/,W, 2,5’ m) € [(11 xT2)P ¢, & ~4 = and p C 7y, then (fst (e) , fst (e/) ,W, 2,2/, m) €
[ E.
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Proof. By induction on m. It suffices to show (fst(e),fst(e’),W, X, L', m) € [[Tlﬂéﬁ.
Y~ ~, L' by assumption. Let Xq, X5 such that

.Z]_;)Z,

b Z2 22/,

o Zl NA 227

W’ m’ such that

e m' < m,

e W IW,

and S, S such that

o (S1,S5,m') bW

There are two cases

1. (e,e/,W,Z, L', m) € [(t1 X T2)7]

. In this case there are three further cases:

e ¢V N eag VA
Ve, Si, 2, w,ep, 25, Sh, w'.

w;X]
Y Fel, Sq :‘>€{, S{ A

(a) (e,e’) € ¢ (en,ea) | I,k ey, Sy == e}, S} —

(w z(}v,.ﬁ WVIICAVIICA)—

IWTWY IWA (S],S4,m) B (W) A
w E‘AW”.[_’; W' A (e{,eé,W”,Z,Z’,m/) € ”—(Tl X T2)p—”€

In this case it is suffices to show

(fst(e), fst(e’)) € < (e1,e2)

€1 ¢ VA €2 ¢ VA
Vey,S1, 20, w, ey, 25, S5, w'.

Sibep, S —==e] S| A
Zg "62, SQ % eé, Sé —
(w %\f}\,,ﬁ W' VIICAVIICA) —

IWTWT IWA (S],S5,m) B (W) A
Wy g WA (ef,e5, W, 2,5/ m') € [t]¢

We already have

It is clear that neither fst(e) nor fst(e’) are values. So let w,w’, eg, eé, 1,24, 81,S4 such that
o fst(e),Z1,51 > ep,S{, w, |
o fst(e’),Xs,S9 - eé,Sé,w’,Zé

By assumption neither e nor e’ are values. Hence the reductions must have happened with EFst.
Hence by inversion

e,Zl,Sl - eo,S{,w,Z{
6/,22,52 - 66,35,(1)/,25
eg = fst(eo)

eé = fst(e])

Also assume w %ﬁ,/'ﬁ w'VIICA V XJC A This directly gives us a W” such that
e W/ W/,

A
(51,53, m') > W7",

w Xy, 5 w', and

L4 (eOa eéa W//a Z7 Zl7 m/) S W(Tl X TZ)p—”‘é
It suffices to show
e W” JW’. We already know that.

e (S7,S4,m/) EwW”. we already know that.
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(b) (e,e’) € ¢ (e1,e2)

o WA, g w'. We already know that.

o (fst(ep), fst(e)),W” £,£/, m’) € [t,]# We get this by induction.
e;1 ¢V AVey, S|, 2, w.

Sk en, S1 =2l e, 8] s —(pol(w) T A) A

(AW W” W' A (S],Se,m/) & (W) A
(617625W”,Z72/am/) S H—(Tl X TQ)-P-”{})

In this case it suffices to show

e1 €V AVel, S, 2], w.

SoF e Sl e, ! —(pol(w) T A) A
(fstle), fst(e”)) € { (erea) | 7" b S pollel £ A
W W" TW' A (S],Ss,m/) & (W) A
(ef,e0, W, 2,2, m/) € [1iT¢)

It is clear that fst(e) is not a value. So let w,epg,X],S] such that

o fst(e),Z1,51 > ep,S{, w, L]

By assumption e is not a value. Hence the reduction must have happened with EFst. By
inversion
e eX,S5 >eyS|,w, X
o ep = fst(ep)
Hence
e ~(pol(w) C A)
and there is an W such that
e W' W
o (S!,Ss,m/) b W"
e (eg, e/, W" L. 5/ m) € [(t1 X T2)P|¢)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.

e (81,S2,m’) EW”. We already know this.
o (fst(ep),fst(e’),W” £, £/, m’) € [t;]#. We get this using the induction hypothesis.
ea &V AVel, SL, 2 w.
(e.e') €4 (e1.e5) Tokeo, Sy LN e}, Sh— —(pol(w) C A) A

) 1,2
(BW"W"” I W’ A (S1, 84, m/) & W” A
(el,eé,W”,Z, Z/vm/) S ”—(Tl X TQ)pﬂél)
In this case it suffices to show
ea &V AVel, SL, 2 w.
(fst(e). fst(e')) € ¢ (e1. es) Yok ey, Sy == e}, S — —(pol(w) T A) A
(BW”.W"” I W' A (S1, S5, m/) & W” A
(ela eé; WH, Za Z/a TTL/) S WTlﬂé)
It is clear that fst(e’) is not a value. So let w',eg, X3, S5 such that

o fst(e'),Xs,S2 = ep, S5, w', L)

By assumption e’ is not a value. Hence the reduction must have happened with EFst. By
inversion

e e Y5, So e}, Shw' X}
e ep = fst(eg)

Hence
e ~(pol(w) E A)

and there is an W’ such that
e W' OIW
o (S1,8),m')bW”
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o (ev 667W/17 Zv Z/a m/) S H—(Tl X TQ)p—H‘El)
It suffices to show the following:

e —(pol(w) C A). We already know this
e W’ JW’. We already know this.

e (S4,S4,m’) EwW”. We already know this.
o (fst(e), fst(e)),W”, £,£/, m’) € [t1]¢. We get this using the induction hypothesis.

2. (e7el7waz7zlam) S {(V,\)/,W, ZC17ZC27m) | (V,V’,W, m) S ”—(Tl X T2)p-"‘\/7l}

Consequently e and e’ are values v and v/, respectively and (v,v/,W,m) € [(t1 x T2)P]5. There are
two options. Either p C A or p [Z A. In the first case (v,v/,W,m) € [11 x T2]4 and in the second
case (v, W.0;,m) € [1; X T3]y and (v/,W.02,m) € [T1 X T2]y. In either case v has the form (vq,vs)
and v’ has the form (v{, V).

It suffices to show

e dV A esd VA
vel,S{, 5, w, e}, T, Sh .

w;X]
2k e, Sl == e{, Si A\

(fst((vi,v2)), fst((vi,v3))) € < (e1,e2) | 2.k eq, Sy RSN ey, L —

(wr, g W VI EAVIICA) —
IWTW IWIA (S],85,m!) B (W) A

w g‘/\/‘i/”.ﬁ LU//\ (e{’eévwﬂazvz/7m/) S WTlﬂ‘é
It is clear that neither fst (vi,va) nor fst (vi,v4) is a value. So let w,w’,ep, eé,Z{,Zé,S{,Sé such
that

o fst (vi,v2),X1,51 = ep, 51, w, I}
o fst (vi,v3),%2,52 = ep, S5, w', L5

The reduction must have happened with EFstBeta. Consequently

e ep =V
®ep =V
e S1=5
e S/ =5
e w=¢e=w’
e X=X
e Xi=1,

Hence the reductions are really

o fst (vi,v2),Z1,S1 = v1,81,€, 14
o fst (vi,v5),X2,S2 = v],Sq,€,%9
It suffices to show
e el g eVILICAVL CA—IW/ W/ IW A
(S1,S2,m’) EWA e My g €N\ (v, v, W, LI m') € [ul{.
It suffices to show the conclusion. In particular it suffices to show
— W' JW’. We get this by
— (§1,S,,m’) Ew. We already know this.
— € &{,‘V,.B €. We get this with refl.
— (vi,vj, W, 2,2 m/) € [T1]¢. There are two cases:
(a) p C A In this case
* ((V]_,Vg), (Vé,\)é),w,m) € H—Tl X T?ﬂ{;‘
Hence
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x (vi,vi,W,m) € [11]§ and
* (vo,vh, W,m) € [12]%.
By [Lemma 8.24| and [Lemma 8.25( we get (vi,v{,W’,m’) € [11]{. The goal follows
directly.
(b) p Z A In this case
* ((v1,v2), W.01,m) € [11 X T2]y and
* ((v1,v5),W.02, m) € [11 X Ta]v.
Hence
* (v, W.01,m) € [11]v and
* (v{,W.GQ,m) € [Tl—lv
which suffices to show (vi,v,W,Z,m) € [t1]¢) if 11 Z A. This is the case because

p C 71 and p L A. We get the goal by

O
Lemma 8.39. If (e,e’,W, 2,5/, m) € [(11x12)P &, = ~4 =’ and p C 1o, then (snd (e) ,snd (/) ,W, 2,2/, m) €
[t
Proof. Analogous to the proof of O

Lemma 8.40. If (e,e/,W, 2,5’ m) € [1,]#, then V1. (inl(e),inl (e’),W, 2,2/, m) € [(t; + 1) ]¢.
Proof. By induction on m. There are two cases:
1. (e,e/,W,L, X', m) € [[Tﬂ]éﬁ. In this case it suffices to show Vto.(inl e,inl e/, W, X ¥/ m) € [(t; +
Tg)rﬂ“éﬁ. Let T be a type. We get £ ~4 X/ from (e,e/,W, L, L', m) € [Tlﬂﬁﬁ. Let X1, X5 such that
o Z1 2 Z7
L4 Z2 2 Z/7
UPEECVIPE S
W', m’ such that
e m’ <m,
e W OW,

and Sy, Sy such that

o (S1,S2,m/) B W',
There three further cases:
er ¢V N e & VA
Vel,S1, 2, w,es, 2L S5 w'.
Sk e, S1 2l el SIA

(a’) (eae/) € (61762) Zg F €o, SQ % eé, Sé —

(Wrfl g W VIIEAVIICA) —
IWTWT IWIA (81,85, m) B (W) A
Wy g w' A (ef,e5,W', 21,5/ m') e [t ]¢

In this case it is suffices to show
€1 ¢ VA €2 ¢ VA

/ / / / ! / ’
velaslvzlaw762azza52aw .

1.y
w 25

(inle,inle’) € q (e1,€2) | I, F ey, Sy === e}, S) —

(w zﬁ,/ﬁ W'VIICAVIICA) —

IWTWT IWIA (81,85, m) B (W) A

W A g WA (ef,ep, WL T m') € [(t+ 1) ¢
By assumption neither e nor e’ is a value. Consequently inl e and inl e’ are not values, either.
So let w,w',efg,eé,Z{,Zé, 1,S% such that
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o inle, Xy,5; > ep,S1, w, I}
e inle’ X5, 52 - ep, S5, w', 15
The reductions must have happened with EInl. Hence by inversion
e e, X,S ey S|, w, X
e e X5, S e}, Shw' X}
e ez =1inl ¢
e ¢p =inl e
Also assume w =4y, g @'V I{ A V I C A This directly gives us a W” such that
e W' IW/,
(81,85, m") & W,
* W=y, w’, and
(eo,el, W £, 2/ m') € [t ]£.
It suffices to show
e W” JW’. We already know that.
(S1,S85,m") EwW”. We already know that.
o WAy, g w'. We already know that.
(inl(eg),inl(e)), W”, £, £/, m’) € [(t1 + T2)1]¢ We get this by induction.
e1 ¢V AVei, S, 21, w.
S ke, St e, S1 s —(pol(w) T A) A

(e;e’) € ¢ (e1, ) "
FEW"W"” JW’' A (S1,Sa, m') > (W) A
(eiaeQaW1/7£7Z/7m/) S ”_Tl-”é)

In this case it suffices to show

e;1 ¢V AVei,S], 2, w.

Liker, S gel,y%—')olw C A A
(inleinle) € (eg,e0)| = 7t 1, S1 = ~(pol(w) EA)

EW”W" JW' A (S],Ss,m/) & (W) A
(e1,e2, W 2,5/ m') € (11 +712)1]8)
By assumption e is not a value. Hence inl e is not a value, either. So let w, eg,Z{,S{ such that
o inle, 24,51 > ep,S1, w, I}
The reduction must have happened with EInl. By inversion
e e X,S > ey S|, w, X
e eg =1inl eg
Hence
e ~(pol(w) E A)
and there is an W such that
e W/ OIW
o (S, Sy, m/) & W”
e (eg, e/, W" L./ m') e [u]f)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.

e (81,S2,m’) Ewr. We already know this.
e (inleg,inl e/, W” £,/ m’) € [(t1 +T2) - ]#. We get this using the induction hypothesis.
e &V AVel, S 2L w.
e eren To b en, Sp s eh ) S4 s —(pol(w) T A) A
) 1,€2
(BW".W"” I W’ A (S1, S5, m/) & W” A
(elv eéa WN) Z7 z/a m/) S WTlﬂé)
In this case it suffices to show
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es &V AVel, S) T w.

. . , 2o ke, So % eb, S5, — —(pol(w) CTA) A
(inle,inl e’) € < (e1,e2)

(AW W" 3 W' A(Sy,S5,m’) & W" A

(61, eéu W”7 Z7 Z/7 m/) S ”—(Tl + T2)lﬂ€)
By assumption e’ is not a value. Hence inl(e’) is not a value, either. So let w’,ep, X3, S5 such
that

e inle’, 25,8y >~ eéﬁé,w’,}:é
The reduction must have happened with EInl. By inversion
e e %5, S e),Shw' X}
e ey =inleg
Hence
e ~(pol(w) C A)
and there is an W/ such that
e W' OW
o (S1,8),m)bwW”
o (e,ef, W 5.5 m') € [t1]¢)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.
e (S4,S4,m) EW”. We already know this.
e (inle,inl ef), W”, .5/ m’) € [(71 + T2)-]#. We get this using the induction hypothesis.

2. (e7 e/7 W7 z7 Zla m) S {(\), \)/, Wa ZC1 ) ZCQ ) m) ’ (v7vla W7 m) S ”—TI—H‘G}
Consequently e and e’ are values v and v/, respectively and (v,v/, W, m) € [t;]#. Consequently inlv

and inl v/ are also values. Because 1. C A (Lemma 4.19)), it suffices to show (inl v,inl v/, W, m) €
[T1 + T2]v. This follows directly from (v,v/,W,m) € [t1]4.

O
Lemma 8.41. If (e,e/,W, 2,5/, m) € [1.]#, then V1. (inr(e),inr(e’), W, 2,2/, m) € [(t; + 1) ]¢.
Proof. Analogous to the proof of O
Lemma 8.42. If
o (e,e/,W,2, 5/ m) € [(t; +12)P]E,
epLT,

° ~ A Z/,

YW m' W IJWAmM <m— W,v.v,v, W m') e [t]5§ = (v/xler, v/ /xle], W 2,5/ m’) €

[1¢,
o YW/ m/ W JWAM <m — Yw,w.(w,w W m') e [r.]f — (w/xley, W' /xles, W, 7/ m') €
[le,
o VW m/ W IWAM <m— W.(v, W.0,m') € [t|v = ([v/xle;, W.0;,m') € (ﬂgcup,
o VW m/ W JIWAM <m— W.(v, W.03,m') € [1,]v — ([v/xle], W .02, m’) € (ﬂgcup,
o VW m/ W IWAM <m— W.(v, W.0;,m') € [t]v = ([v/yles, W .0, m') € [ﬂgcup, and
e VW' m/ W JIWAmM <m— W.(v, W.0;,m') € [1a]y — ([v/yle), W .0z, m’) € [ﬂgcup,
case e of case e’ of
then | [inl(x)=e; , |inl(x)=e] ,W,5, 2/ m| € [t]L.

linr(y) = ey |inr(y) = €}
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Proof. By induction on m. It suffices to show (case(e,x.e1,y.e2),case(e’, x.ef,y.e5), W, Z, L' /m) € [[ﬂ]{;}ﬁ.

We already have £ =4 X’ by assumption. Let X1, X5 such that

e X D%,
Xy D Z/,

o X~y Lo,
W’ m’ such that
e m' < m,

o« W IW,

and Si, S5 such that

o (S1,S5,m') bW

There are two cases:

1. (e,e/,W, 2,2 m) € [(t1 + TQJP—H{}B. There are several further cases:

1 €V N ey g VA
Vel,S1, 2], w, ey, 25, Sh

w;X]
pEY Fel, Sq :‘>€{, S

!/
,w'.

VAN

(a) (e,e’) € ¢ (er,ea) | I,k ey, Sy == e}, S} —

In this case it is suffices to show

(case(e,x.e1,y.e2),case(e’, x.e1,y.e5)) €

(w z\/}\,,ﬁ W VIICAVIICA)—

IWT W IWIA (S],8hm!) B (W) A
w &{,qv/,_ﬁ W' A (ef, e, W 2 5/ m') € [(t1 + T2)P ¢

(e1,e2)

e ¢V A exd VA

Vel,S1, 2, w,es, 2L, S5 w.
w; ]
2 "617 S; :l>€{, S{ /\
v’;x}
2ok oeq, SQL:>€§, Sé—>
(w %(}V,.ﬁ W VIICAVIICA) —

W I WA (81,85, m) E (W) A
w E(/\l///_ﬁ w’ A (e{,e&W”,Z,Z’,m’) € ”—T-ﬂé

Clearly neither case(e, x.ej,y.ez) nor case(e’, x.ef, y.es) is a value. Soletw,w’,efg,eé, 1,25,81,S4

such that

e case(e,x.e1,y.e2), 21,51 = ep,S], w, I{

/ / / / / / i
e case(e’,x.e1,y.e5),X0,So >~ ep: Sy, w’ L)

Because neither e nor e’ is a value reductions must have happened with ECase. Hence by

inversion
li /
e e X,S5 - 60,51,(,0,21
/ / / / /
e ¢ 522552 - 607827w aZQ
e ep = case(eg,Xx.e1,Y.e2)
. eé = case(e), x.e1,y.e5)

Also assume w =5y, g W'V I{ A V I C A This directly gives us a W” such that

e W/ JW/,

o (8],85,m)EW",

* W=y, s w, and

e (en,ef, W', 2.5/ m/) € [(t1 + )P
It suffices to show

e W/’ JW’. We already know that.
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A
o (51,54, m') > W". We already know that.
o W=y, s w'. We already know that.
e (case(ep,x.e1,y.e2),case(e),x.ef,y.e5), W” L. 5/ m’) € [t]# We get this by induction if
we can also show
- YW m"W” JW"Am” <m — V(v,v, W"” m") € [t ]{.(v/xler, v /xle], W £, £ m") €
[T]¢.
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W"" J W. The claim follows directly from the assumptions.
— YW m"W"” JW"Am"” <m — VY(w,w',W" m") € [t]5.(Iw/xlez, W' /xles, W" £ .5/ m") €
[l¢.
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.
- VW”’ﬁm”.W’” IW’Am” <m = WYW.(v, W”.0,,m"”) € [t1]v — ([v/xle;, W”.0;,m") €
kil e
Let W O W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.
- VW’”LIm”.W”’ IW/’Am” <m = W.(v, W”.0;,m"”) € [t1]v — ([v/xle], W .02, m") €
gl
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.
=YW MW I WA < W (v, W81, M) € [Ta]y = (Iv/yles, W01, m) €
[R5
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.
- VW”’&m”.W’” IW/’Am” <m —= W.(v, W 8, m") € [ta]y — (v/yles, W .8, m") €
gl
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
Lemma 7.2) also W 3 W. The claim follows directly from the assumptions.
(Lemma 7.2 y p

e; ¢V AVei,S], 2, w.

Jikes, S %e’,S'%—' yol(w) £ A) A
(b) (ee) el (eres)| 70 n “A()—)
FEW"W"” JW’' A (S7,Sa, m') > (W) A
(61,627W1/7272/7m/) S ”—(Tl +T2)pﬂ€l)
In this case it suffices to show
e1 ¢V AVei,S1,2, w.
/ / Iiker, St LN e;, ST — —(pol(w) Z A) A
(case(e,x.e1,y.ez), case(e, x.ef,y.es)) € < (e1,e2)

AW W” IW' A (S],Ss,m’) & (W) A
(ef,e2, W 2,5/ m') € [t]#)
It is clear that case(e,x.e1,y.e2) is not a value. So let w, eg, L], S such that

o case(e,x.e1,y.e2), 21,51 = ep,S], w, I{

By assumption e is not a value. Therefore the reduction must have happened with ECase. By
inversion

e e X,S >¢eyS|,w, X

e ep = case(ep,x.e1,Y.e2)
Hence

e ~(pol(w) C A)
and there is an W such that

e W' W

o (S,Sy,m) & W”

e (eg, e/, W" L./ m') € [(t1 +T2)P|¢)
It suffices to show the following:

e —(pol{w) C A). We already know this
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e W’ JW’. We already know this.

A
e (81,S2,m’) > W”. We already know this.
e (case(ep,x.e1,y.e2),case(e’,x.ef,y.e5),W" £, 2/ m’) € [t]f. We get this using the in-
duction hypothesis if we can also show

=YW m"W"” JW"Am” <m — V(v,v, W"” m") € [t]f.(v/xler, v /xle], W £, £/ m") €
T4,
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.

— YW m"W"” JW"Am"” <m — Y(w,w',W" m") € [t]5.(Iw/xlez, W' /xles, W" £ .5/ m") €
[1¢.
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W'/ J W. The claim follows directly from the assumptions.

- YW MW WA < m W (v, W81, m) € [Ty = (Iv/x]er, W61, m) €
gl
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.

- YW”7 m” W"” JW’'Am” <m = Y.(v, W 0, m") € [t1]v — ([v/xle], W .02, m") €
fe]pele.
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.

— YW m W WA < mos (v, W01, m”) € [toly — (v/yles, W0, m") €
gl
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.

- YW"” m" W"” JW’'Am” <m = W.(v, W 08, m"”) € [ta]v — (v/ylel, W .85, m") €
gl
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W' J W. The claim follows directly from the assumptions.

ea &V AVeb, S5, 20 w.

© (e e dferey | e L el S) s —(pol(w) CA) A
9 1,€2
(BW".W"” I W' A (S, S5, m/) & W” A
(el,eé7wllazvz/7m/) S W(Tl +T2)pﬂ€l)
In this case it suffices to show
e €V AVel, S5 T w.

5o b eg, So 22 ef S5 — —(pol(w) C A) A
(case(e,x.e1,y.e2), case(e, x.ef,y.e5)) € ¢ (e, ea)

EW”.W” IW' A (S1,S5,m/) & W” A
(e1, ey, W 2.5/ m’) € [t]#)
It is clear that case(e’,x.e],y.e3) is not a value. So let w, eg, X5, S5 such that

/ / / / / /
e case(e’,x.e1,y.e5), X0, S2 >~ ep: Sy, w, Iy

By assumption e’ is not a value. Therefore the reduction must have happened with ECase. By
inversion

e e Y5, Sy e, Shw, L}

° eé = case(e), x.e1,y.e5)
Hence

e —(pol(w) CA)
and there is an W/ such that

e W' W

o (S1.8),m')bwW”

o (e,ef, W .5/ m') € [(t1+)P]H)
It suffices to show the following:

e —(pol{w) C A). We already know this
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e W’ JW’. We already know this.

A
e (81,84, m') > W”. We already know this.
e (case(e,x.e1,y.e2),case(e), x.ef,y.e5), W £ 5/ m’) € [t]£. We get this using the induc-
tion hypothesis if we can also show

- YW m"W” JW"Am” <m — V(v,v, W"” m") € [t]f.(v/xler, v /xle], W £, £ m") €
[T]¢.
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.

— YW m"W"” JW"Am"” <m — VY(w,w', W m") € [t]5.(Iw/x]ez, W' /xles, W" £ .5/ m") €
[Tl
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.

- YW MW WA < m W (v, W81, m) € [Ty = (Iv/xler, W61, m) €
gl
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.

- YW” m”" W"” JW’'Am” <m = Y.(v, W”.0;,m") € [t1]v — ([v/xle], W .02, m") €
fe]pele.
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.

= YW m W WA < m o W (v, W8 m) € [Ta]y = (Iv/ylea, W01, m") €
gl
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
(Lemma 7.2) also W/ J W. The claim follows directly from the assumptions.

- VW”’&m”.W’” IW/’Am” <m = W.(v, W”.0;,m"”) € [ta]y — (v/yles, W .08, m") €
[T]EP.
Let W 3 W” and m” < m’. Then in particular by transitivity m” < m’ and
Lemma 7.2)) also W J W. The claim follows directly from the assumptions.

y

2. (e7el7w7z7zlam) S {(V,V’,W, ZC17ZCQ7m) ’ (V,V’,W, m) S ”—(Tl +T2)p‘"‘\/}}

Consequently e and e’ are values v and v/, respectively and (v,v/, W, m) € [(t1 + T2)P]5. There are
two cases

(a) p C A. In this case (v,v/,W,m) € [11 + 12]5. It is suffices to show

er gV N e g VA
Vel,S1, 2, w,es, X, Sh w'.

Sibep, S —=e], S| A
(case(v,x.e1,y.e2),case(v’,x.ej,y.e5)) € ¢ (er,e2) | 5, F €2, So “:“> e, S, —

(wafy g W VIIEAVI,CA) —
IWIWT IW A (S, SL,m) B (W) A

w &(,qv,,_ﬁ W' A (ef, ey, W" 5 5/ m') € [t]¢
Clearly neither case(v, x.eq,y.e2) nor case(v’, x.e{,y.e5) is a value. Solet w,w’, eg, eé, ¥1,%4.81,S)
such that

e case(v,x.e1,y.e2),L1,51 > ep, S|, w, I{
e case(V',x.ef,y.e3), 2,52 = ep, S5, w', )
There are two cases:
i. v=1inl vy, v/ = inl v} and (vo,v),W,m) € [11]4 In this case the reductions must have
happened with ECasel. Hence by inversion
e epg = [vg/xle;
° eé = [v{/xle]
e w=€c=w’
o S{ = 51
o Sé = SQ
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e X=X,
e X=1,
So the reductions are really
e case(inl vo,x.e1,y.e2),21,S1 = [vo/xle1, S1,€, L
e case(inl v}, x.ef,y.e5), X2, Sa = [v)/xle], Sz, €, Lo
It suffices to show
ey eVE CANL CA— IWW IW A(S,Se,m) e W Ae b,
e N ([vo/xler, vy/xle], W £, £/ m') € [t]£.
It suffices to show the conclusion. In particular it suffices to show
— W/ JW'. We get this by [Lemma 7.2
— (S1,S2,m’) EW”. We already know this.
— € E(}V,_B €. We get this by refl.
— (vo/xler, v /xle;, W £, 2/ m') € [T]¢. By |Lemma 8.24| and [Lemma 8.25( we have
(vo, v$, W/, m’) € [t1]¢. We get the claim from our assumption.

ii. v =1inr v, v/ = inr v} and (vo, v}, W, m) € [12]# In this case the reductions must have
happened with ECaser. Hence by inversion
o eg = [vo/xley
° eé = [v{/xle

e w=€e=w'

e S1=5;
(] Sé:SQ
e X=X
o Y =13,

So the reductions are really
e case(inr vp,x.e1,y.e2), L1,S1 > [vo/xles, S1,€, 24
e case(inr v}, x.ef,y.e5), o, So > [v)/xle}, Sa, €, Xo
It suffices to show
eenfl s eVII CAAL CA = IWW I W A(S,S,m) e W Ae =,
e N ([vo/xler, vy/xle], W £, £/ m') € [t]£.
It suffices to show the conclusion. In particular it suffices to show
— W/ JW'. We get this by [Lemma 7.2
— (51,S2,m’) EW”. We already know this.
- € &ﬁ/,_ﬁ €. We get this by refl.
— (vo/xler, i /xle, W, £, £/ m') € [T]¢. By |Lemma 8.24 and [Lemma 8.25/ we have
(vo,v{, W/, m’) € [ta]¢. We get the claim from our assumption.
(b) p Z A. In this case
e (VW.0;,m) € [ty +T2]y and
e (V,W.0y,m)€E [11+T2]y.

Because p C T also.
o T IZ A. If this was not the case we would have p C A by transitivity (Lemma 4.1)) which

would contradict the assumption.
By p C pc U p. Hence also
e pclp [Z A. If this was not the case we would have p C A by transitivity which
would contradict the assumption.
Hence by it suffices to show
e (case(v,er,e2), W.0;,m) € [T]EP. Tt suffices to show (case(v, e, e2), W.0;,m) € (ﬂg;"'p.
It is clear that case(v, e, e2) is not a value. So let S,0’, m’ such that
- 0/ JW.0,,
- (S,m")>6,
- m’ <m,
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and eg,S’, w, X1, Z{ such that
— case(v,e1,e2),L1,S > ep, S, w, X1.
Because (v, W.0;, m) € [t1 4+ T2]v, there are two cases
i. v=1inl vy and (vo, W.01,m) € [11]y. In this case the reduction must have happened
with ECasel. Hence

— eg = [vo/x]ey

~-§=5
— W =¢€
R

So the reduction is really

— case(inl vg, ey, es), X1,S = [vo/xle1, S, €, Z1.

It suffices to show

— Vq.pol(e) = q — pcUp C p. Because pol(e) is undefined there is nothing to show.

— 0/ 30’. We get this by [Lemma 6.2]

— (S§,m/)>0’. We already know that.

— (vo/xJe1,0’,m’) € [T]R°"P. By[Lemma 8.4| (v, 0, m’) € [11]v. We get ([vo/x]e1,0’,m’) €
[T]R°“P by assumption.

il. v=1inr vy and (vo, W.01,m) € [T2]v. In this case the reduction must have happened
with ECaser. Hence

— ep = [vo/x]es

-S'=S
—w=¢
—5=3.

So the reduction is really
— case(inr vg,er,e3), Z1,S = [vo/xles, S, €, Z1.
It suffices to show
— Vq.pol(e) = q — pcUp C p. Because pol(e) is undefined there is nothing to show.
— 0/ 30’. We get this by [Lemma 6.2]
— (S§,m/)>0’. We already know that.
— (vo/xJeq, 8, m’) € [T]R°"P. By[Lemma 8.4| (v, 0, m’) € [12]v. We get ([vo/x]eq, 0, m’) €
[T]R°“P by assumption.
e (case(v,ef,e}), W.02, m) € [T]E-P. Tt suffices to show (case(v’, e], e}), W.02,m) € [ﬂg;"'p.
It is clear that case(v’, e], e)) is not a value. So let S,0’, m’ such that
— 98’ I W.0,,
- (§,m) >0/,
- m’<m,
and efs,S’, w, Xy, X4 such that
— case(v’,eq,e5),X2,S = eé,S’,w,Zé.
Because (v/,W.02, m) € [11 + T2]v, there are two cases
i. v/ =1inl vy and (vo, W.03,m) € [11]y. In this case the reduction must have happened
with ECasel. Hence
— eé = [vo/xle]

~ 8 =5
— W =¢€
—Ih=5,

So the reduction is really

— case(inl vg,ef,e}), X2, S > [vo/x]e}, S, €, Zo.

It suffices to show

— Vq.pol(e) = q — pcUp C p. Because pol(e) is undefined there is nothing to show.

— 0/ 30’. We get this by
— (S§,m')>0’. We already know that.

104



— ([vo/xJes, 0", m') € [T]RHP.

By (v0,0',m’) € [11]v. We get (lvo/xle}, 8", m") € [T]EP by assump-

tion.

ii. v=1inr vy and (vo, W.02,m) € [T2]y. In this case the reduction must have happened
with ECaser. Hence

— ep = [vo/x]e)

- §'=5
— W =€
— I =1,

So the reduction is really

— case(inr vg, ef,e5), X2, S > [vo/xle}, S, €, Lo.

It suffices to show

— Vq.pol(e) = q — pcUp C p. Because pol(e) is undefined there is nothing to show.

— 0’ 30’. We get this by
— (S,m’)>0’. We already know that.
— ([vo/xleb, 0’,m’) € [T]E-P.

By (vo,0’,m’) € [Ta]v. We get ([vo/xles,0’,m’) € [T]2"P by assump-

tion.

O

Lemma 8.43.

L IfvPf v, (v,01,m) € [t]v,(v/,02,m) € [1]y and firstorder(t), then (v,v’, (81,62, B), m) € []4.

2. If vB~t v/ (v,01,m) € [Aly,(v/,02,m) € [Aly and firstorder(A), then (v,v’,(01,02,8),m) €
[AT%-

Proof. By mutual induction on firstorder(A) and firstorder(T).

e FPol: In this case T = (A’)P for some policy p and type A’ such that firstorder(A’). There are two
cases

1. p C A: In this case we need to show (v,Vv’, (01,02, B), m) € [A']#. By induction it suffices to
show

-V Bf:f\l/ v’. The only rule by which vP~% v’ could have been derived is eqLow which has
this as a premiss.

— (v,01,m) € [A]y. This follows directly from (v,0;,m) € [(A’)P]y.
— (v,02,m) € [A’]y. This follows directly from (v,05, m) € [(A")P]y.
— firstorder(A’). This is an assumption of the rule.
2. p £ A. In this case it suffices to show
— (v,01,m) € [A]y. This follows directly from (v,0;,m) € [(A’)P]y.
— (v,02,m) € [A’]y. This follows directly from (v,05, m) € [(A")P]y.
e FUnit: In this case A = unit. From (v,0;, m) € [A]y and (v/,02, m) € [A]v it follows directly that

—v={() and
—v' =0,
The claim follows directly from the definition of Junit]4.

e Fnat: In this case A =N. From (v,0;,m) € [A]y and (v/,05, m) € [A]y it follows directly that

— v=mnand
— v =m.
—n,meN

Because n B~4 m we know that n = m. The claim follows directly from the definition of [N]5i.

105



e FProd. In this case A = 11 X To for some types T; and Ty such that firstorder(ty) and firstorder(ts).
From (v,01,m) € [T; X T2 |y and (v/, 02, m) € [11 X T2]v, it follows directly that there are vy, vy, v{, V)
such that

) € [t1]v,
— (v2,01,m) € [12]v,
— (v{,02,m) € [T1]v, and
— (v4,05,m) € [T2]v.

Furthermore (vy,v2) B~ (v{,v}) must have been derived using eqPair. This gives us by inversion

~A

— 3 4
Vl -, \)1

B A
~

- Vi Vo
Hence by induction.
— (v1,v1, (01,02, 8),m) € [T1]5 and
— (v2,V5,(01,02,B),m) € [T2]5-
Consequently ((v1,v2), (v{,v3),(01,02,B),m) € [T1 x T2]4 which is what we needed to show.

e FSum: In this case A = 11 +7T5 for some types T; and 75 such that firstorder(t;) and firstorder(ts).
The equivalence could only have been derived with eqInl or eqlnr.

1. eqlInl: In this case

— v=1nl vy,

— v/ =inl v{, and
~A L

— vo Pt v

From (inl vy, 01, m) € [11 + T2]y and (inl v}, 02, m) € [T1 + T2|v we get
— (vo,01,m) € [T1]v
— (v{,02,m) € [T1]v.
Hence by induction
— (vo,§, (01,62,8),m) € [ ]5.
Consequently (inl vo,inl v{, (01,02, ), m) € [t1 + T2]% which is what we needed to show.

2. eqlnr: In this case

— v=1inr vy,

— v/ =inr v{, and
~A 4,

— VO B_Tg VO

From (inr vo,01,m) € [t + T2]v and (inr v{,02, m) € [T1 + T2]v we get
— (vo,01,m) € [T2]v
— (v{,02,m) € [T2]v.
Hence by induction
— (vo, v, (01,62,B),m) € [T2]%.
Consequently (inr v, inr v{, (01,02, ), m) € [T1 + T2 |4 which is what we needed to show.

e FRef: In this case A = ref Ty for some 7( such that firstorder(ty). Because (v,01, m) € [ref to]v
and (v/;02, m) € [ref 1]y, we know there are locations 1,1’ such that

—v=1,
— v =1

- 91(1) = To, and
- 02(l) =10
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1PA , I must have been derived by eqRef. Hence by inversion

- (L) ep.
(1,1, (01,02,B),m) € [ref To]4 follows directly.
O

Lemma 8.44. If firstorder(t) and (v,v/, W, m) € [T]5, then also vW-P~% v/ and if firstorder(A) and
(v,v',W,m) € [A]+%, then also vW-P~/t v/,

Proof. By mutual induction on firstorder(t) and firstorder(A).

e FPol: In this case T = (A’)P for some policy p and type A’ such that firstorder(A’). There are two
cases

1. p C A: In this case (v,v/,W,m) € [A']{. By induction v"W-P~4, v/. By eqLow this suffices
to show the goal.

2. p £ A. We get the goal by eqHigh.
e FUnit: In this case A = unit. From (v,v/, W, m) € [unit]s we get
—v={()and
— v =().
The claim follows by eqUnit.
e Fnat: In this case A = N. From (v,v/,W,m) € [N]5} we get
—v=mnand
— v =n.
The claim follows by eqNat.

e FProd. In this case A = 11 X To for some types T; and Ty such that firstorder(ty) and firstorder(ts).
From (v,v/,W,m) € [11 x T2]%, it follows directly that there are vq,v2,v], v} such that
—v= (Vl,VQ),
-V = (viavé)u
- (vlvvivwa m) S WTlﬂGa

- (VQ,Vé,W,m) S ”_TQ—HGa

Hence by induction

W.B LA
~7

W.B LA 4/
o Vi

-V v; and

— vy
The claim follows by eqPair.

e FSum: In this case A = 11 +7T5 for some types T; and 75 such that firstorder(t;) and firstorder(ts).
From (v,v/,W,m) € [11 + T2]% it follows directly that there are several cases:
1. v=1inlvg, v/ =inl v} and
- (Vo,V(/),W, m) € WTlﬂ‘é'

Hence by induction

W.B LA
e

- Vg V.
The goal follows by eqlInl.
2. v=inr vg, v/ =1inr v} and
— (vo, vy, W, m) € [ta]4.
Hence by induction

W.B LA

/
— Vo =% Vg-

The goal follows by eqlInr.
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e FRef: In this case A = ref T( for some T such that firstorder(ty). Because (v,v/, W, m) € [ref 1o
we know there are locations 1,1’ such that

-v=l,
— v/ =1 and
— (LU) € W.B.

By eqRef this suffices to show the goal.

Lemma 8.45. If vB~" v/ and B’ DO B, then v ~4 v/,

Proof. By induction on the derivation of vP~Z v/. The only intersting case is the case for eqRef. In all
other cases we just replace the premisses with either the same premisses or the premisses we get from the
induction hypothesis.

In the case of eqRef we have 1F~% 1/ and (1,1') € B. Because B’ D B, also (1,1') € B’. We get
1B ~A 1 by eqRef. O

Lemma 8.46. If Y C A, p/(X) Cp and p C A, then p’ C A.

Proof. If p’ = L, this is true by [Lemma 4.19] Otherwise we can assume that p’ is a flow lock policy. By
assumption

e p/(Z)Cp,
e pC A

Consequently by transitivity we have
e p'(Z)C A

By [Lemma 4.15
e p/(Z)(X) CA(Z).

By [Lemma 4.16| and [Lemma 4.1| this gives us

e p'(Z) CA(R).

Remember that an attacker A is a pair (a, Z*) and its policy is the single clause Z* = a.
So A(Z) = Z\Z = a. From p’(Z) C A(Z) we can therefore gather that there is a clause c in p’ of the
form X. = a such that

o T \Z CIMZ.
Consequently

o (ZN\DJuUZC(ZAD)UL
This simplifies to

e L, UZCIAUL.
Because £ C A we have

o T C 1M
In this case £ UL = £, Hence

e L. ULCIA
Consequently also

o X . C XA,
This gives us

oS, =>al I =a.
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Because L. = a € p’ this gives us
ep'CI*=aqa
which is exactly what we needed to show. O

Lemma 8.47. If (e,e’,W, 2,5/ m) € [t']#, L ~4 &' and v/(2) <: Tand t/(Z') <: T, then (new (e, T) ,new (e/,T) , W, 2, 2/,
[(ref T)-7£.

Proof. By induction on m. It suffices to show (new(e,T),new(e’,t),W,%,Z',m) € [[(ref(T))lﬂﬁlﬁ. We
already have £ ~,4 X’ by assumption. Let X1, X5 such that

1 2%,

e I, D1

o I~y Lo,
W’ m’ such that

e m <m,

o« W IW,

and S, Sy such that

A
° (817 SQ, m’) > W',
There are two cases:

1. (e,e/,W, 2,2 m) € [t/ ﬁlﬁ. In this case there are three further cases:

e gV A erd VA
Ve ,S1, 5, w, ey, 2L Sh w'.

.y
w;X ]

2 |—€1,51:>€{,S{/\

(a) (e,e’) €< (er,e2) | I,k ey, So % e}, Sb—

(w ”évurs W' VIICAVIICA) —
IWTWT IWA (81,85, m) B (W) A
Wy, g WA (ef, ey, W, 1,1 m') e [T]¢
In this case it is suffices to show

e ¢V A ey gV A
Vel,S1, 21, w,ep, 25,85, w'.

Tk er, S ==h el SIA

(new(e,7),new(e’, 7)) € { (e1,€2) | . F es, Sy s ef, Sb —

(WY g W VIIEAVIICA) —

IWT W IWIA (S],8hm!) B (W) A

Wy g WA (ef,e5, W, 2,2/ m') € [(ref(t)H]¢

It is clear that neither new(e, T) nor new(e’, t) is a value. So let w, w’, eg, eéi{, ¥}, S1,S4 such
that

e new(e,T),%Z1,51 > ep,S{, w, L]

e new(e’,T),X9,Ss >~ eé,Sé,w’,Zé

By assumption neither e nor e’ are values. Hence the reductions must have happened with
ENew. Hence by inversion

e7zlvsl >'eOaS{7waZ{
! ! ! ! /
e’ X9,S9 > e}, Sh,w’ X
e ep =mnew(ep, T)

. eé =new(e}, 1)
Also assume w z(}v,.ﬁ w'VIICA V XL C A. This directly gives us a W” such that
o W/ JIW,
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o (S],S5,m') b W",
* W=y, w, and
e (eg,ef, W' 2,5/ m/) e [t]¢
It suffices to show
e W” JW’. We already know that.

A
e (51,55, m’) > W"”. We already know that.
o w E(,{v”ﬁ w’. We already know that.

e (new(eg,p),new(el, p), W” £, £/ m’) € [(ref T)1]¢. We get this by induction.
e;1 ¢V AVey, S|, 2, w.

S ke, St e, ST —(pol(w) T A) A
(e,e’) € 4 (e1, €2) ’
AW W"” JW’' A (S1,Sa, m') > (W) A

(ef, e2, W, 2,5/, m) € [T]{)

In this case it suffices to show

e1 ¢V AVel,S1,2], w.

SiF e, St e, S1 s —(pol(w) T A) A

(new(e, ), new(e’, 7)) € q (e1, e2) u
(FW’"W" IJW’' A (S1,S2,m') > (W) A
(ef,ex, W 2,5/ m’') € [(ref T)]¢)

It is clear that new(e, T) is not a value. So let w, e, X{,S] such that

o new(e,T),Z1,51 > ep, S{, w, L]

By assumption e is not a value. Hence the reduction must have happened with ENew. By
inversion

e e X,S >¢eyS|,w, X

e ep =mnew(ep, T)
Hence

e —~(pol(w) C A)
and there is an W/ such that

e W'IW'

o (SI.S,m') b W”

e (eg, e/, W" L./ m') e [t']¢
It suffices to show the following:

e —(pol(w) C A). We already know this
e W’ JW’. We already know this.

e (51,52, m’) EW”. We already know this.
e (new(eg,T),new(e’,T),W"” £, £’ m’) € [(ref T)-]¢. We get this using the induction hy-
pothesis.
e &V AVel, S) 3L w.
Ty b eg, So = e S —(pol(w) C A) A
(e,¢/) € { (e1, e2) o )
(BW".W"” I W’ A (S1,S4,m/) & W” A
(el7 eéa WN) Z‘v Z/a m/) € WT/ﬂﬁl)
In this case it suffices to show
ea ¢V AVe), S50 w.
To b eq, So === e}, S5 — —(pol(w) T A) A
(new(e, t),new(e’, 7)) € < (e, e2) u
EW7W” TW' A (S1,85,m’) & W A
(e, e, W 5,5/ m’') € [(vef T)]¢)
It is clear that new(e’, T) is not a value. So let w’, eé,Zé, S4 such that

e new(e’,T),%s,S, - eé,Sé,w/,Zé

By assumption e’ is not a value. Hence the reduction must have happened with ENew. By
inversion
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e e X5, So e}, Shw' X}
. eé =new(e), T)
Hence
o ~(pol{w) EA)
and there is an W’ such that
o« W' W
o (S1,85,m) b W”
o (e,ef,W",L,5' m') e [t]¢
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.
e (84,54, m) Ewr. We already know this.
e (new(e, 1), new(e), T), W”, £,/ m’') € [(ref 1)-]£. We get this using the induction hy-
pothesis.

(e e/, W, 5,5, m) € {(v,v',\ W, L, L,,m) | (v,v', W, m) € [T}

So there are v and v’ such that e =v and e’ =V’ and (v,v/,W,m) € [t']+.

It suffices to show
e1 ¢V N e g VA

Ve{,S{,Z(,Lu,eé,ZQ,SQ,w/.
Sibep, S =e], S| A
(new(v, ), new(v', 1)) € { (e1,€5) | £ - e, S5 L el S
(w m(,qv/.ﬁ WVIICAVIICA) —
A
IW W AW A (S, S5, m) T (W) A
W=y g W A (ef,e5,W”, 2,5/, m') € [(ref 1)-]¢
It is clear that neither new(v, ) nor new(v’, 1) is a value. So let w, w’, eq, e, X, 3,51, S5 such that

o new(v,T),%1,51 > ep, S1, w, L]

e new(v’,1),Xs,S9 >~ eé,Sé,w’,Zé

The reductions must have happened with ENewBeta. Hence there are A, p,1,1’ such that

e T=AP
° eﬁ :l
° eézl’

e 1¢ dom(Sy)
o U/ ¢ dom(Ss)
e X =X,
e X =13,
e S1=5U{l— (v,T)}
e 5, =S5 U{l' — (v,1)}
o w=1;(v)
e w' =1.(v)
Hence the reductions are really

L4 neW(V7T)7zlvsl > lvsl U{l' — (va)}vl’t(v)vzl
° new(vl7T)722752 - l/aSQ U{I'I — (V/7p)}7l'~/r(v,)722

Also assume 1(v) z(}\,,ﬁ ULWVIVE CAVI; CA Weknow T/(X) <: 7t and T/(X') <: T or more
specifically t/(X) <: AP and t/(ZX’) <: AP. Hence there must be a type B and policy p’ such that
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e T/ =BV,
p'(Z) Cp,
p'(£) Cp and
e B< A.

It is clear that W’.3 U{(1,1’)} is an injective partial function because 1 ¢ dom(S;) and 1’ ¢ dom(Ss).
Hence it suffices to show

o (W.0,U{l, T}, W.0, U{l',7}, W .B U{(L,1")}) O W’ We have to show
- W0, U{l,T} 3 W'.0;. Let 1” € dom(W’.01). Then clearly also 1” € dom(W’.0; U{l,1}).
We still have to show W’.01(1”) = W’.0; U{l,1}(1”) This is the case if 1" # L.
We show 1" # 1: By assumption 1 ¢ dom(S;) and (S1,S2, m’) Ewr Hence in particular
dom(W’.0;) € dom(S;). Because 1 ¢ dom(S;) therefore also 1 ¢ dom(W’.0;). But
1" € dom(W’.01). Hence we must have 1”7 # 1.

— W0, U{l/, 7} O W'.0;. Let 1” € dom(W’.03). Then clearly also 1” € dom(W’.0, U{l’,t}).
We still have to show W’.05(1") = W'.0, U{l’, T} (1”) This is the case if 1”7 #£ 1’
We show 1”7 # 1’: By assumption 1’ ¢ dom(S3) and (S1, Sy, m’) £ W', Hence in particular
dom(W’.05) € dom(Sy). Because I/ ¢ dom(Ssy) therefore also 1’ ¢ dom(W’.05). But
1" € dom(W’.05). Hence we must have 1”7 £ 1'.

- W.BU{(1,1)} D W’'.B. This is obvious.

e (SU{l— (v, T)},S2U{l! — (v, 1)}, m") 2 W' e, u{l,t},W.0, u{l',t}, W.gU{(L,1)}.
We have to show
- W AU{11)}Cdom(W’'.0; U{l,t}) x dom(W’.0, U{l’, T}).
Let (11,1) € W/. U{(1,1")}. There are two options:
(a) (L1,1l2) # (L,V). In this case (11,ly) € W’.f. By assumption (S1,Ss, m’) Ew. Hence
W' C dom(W’'.01) x dom(W’.05). Therefore (11,1) € dom(W’.0;) x dom(W’.05).
Then also (11,15) € dom(W’.0; U{l,1}) x dom(W’.0, U{l’,T}).
(b) (14,12) = (L,1'). Tt suffices to show (1,1') € dom(W’.0; U{l,t}) x dom(W"’.0, U{l’,1})
which is clearly the case.
- V(lh 12) € WIB U {(17 V)}.W/.Gl U{l, T} (11) = W/.eg U{V,T}(lQ) AN
(S1U{l — (v, 1)} (11), SoU{l" — (v, 1)} (La), (W'.01U{L, T}, W.0.U{l', T}, W .BU{(1,1")}), m’) €
[[W’.Gl U {17 T} (11)-"“\‘71
Let (11,1) € W/. U{(1,1")}. There are two cases:
(a) (L,1s) # (LU). Then (l1,12) € W’.B. Because (S1,S2,m’) & W we know W'.p C
dom(W.01) x dom(W.0,). Hence
x 1 € dom(Wel) and
x lo € dom(W.05).
By the same argument as in the previous case this means that
* ].1 #1
* 12 75 .
Therefore

(S1,S2,m’

A !
W0, U (L1)(l) =W'.0:(1) Jew W .05(12) = W0, U{l', 1} (L)

We also get
* (S1(l1),S2(la), W/, m/) € TW'.0:(L1)]%

from (S1,S2, m’) 2 W, We have already shown in a previous case that (W'.0; U
{7}, W.o, u{l’, 7}, W.p U{(L,1")}) 3 W’'. Hence we get

* (S1(L1), S2(l2), W01 U{L, T}, W/ .6, U{l/, T}, W/.B U{(L,1')}), m") € [W.0,(L1)T%
by Because 15 # 1 and 1y # 1/ this is equivalent to the remaining subgoal.
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(b) (11,12) = (1,1'). In this case

W.0,U (LT (L) =W.0,U (1) =1=W.0,U ', 1)) =W".0,U (1, 7)(l2)

The second subgoal simplifies to (v,v', (W’.01U{l, T}, W’.0,U{l’, t}, W'.BU{(1,1")}),m’) €
[15-
T has the form AP. We do case analysis on whether p C A or not:
i pCA.
We do case analysis on 1(v) z\f}v,ﬁ UWVIVELLCAV I, C A

A 1.(v) “(/QV/.B 1Z(v').

From (v,v/,W, m) € [t']4 or rather (v,v/,W, m) € [BP'{ we get

w (v, W.0;,m’) € [B]y and

w (v, W.0,,m') € [Bly

by the definition of [BP']y and From this we get

w o (v, W.0;,m') € [A]y and

w (V,W.0;,m') € [Aly

by

w (v, W.0;,m') € [AP]y and

w (v, W0y, m') € [AP]y

follows directly from the definition of [AP]y. The only rule with which 1;(v) %(}V,_B
12(v’) can be derived is extend-t as it is clear from the structure of the observa-
tions that neither refl nor extend is applicable. high is also not applicable because
p C A by assumption.

By inversion
= vW,'B:f\lp v
Also remember that we have restricted ourselves to first order state. Therefore we
also have firstorder(AP). Therefore [Lemma 8.43|gives us (v,v/, W/, m’) € [AP]3.
The goal follows by |Lemma 8.25|

B. L, CAVI, CA

First we show that p’ C A: By assumption X; 2 X, X DO X/ p/(£) C p and

p/(X/) C p. Hence by and transitivity (Lemma 4.1)
w p/(X)Cpand

w  p'(Z2) Cp.
In both cases (£; £ A and Xy C A) we get p’ C A by [Lemma 8.46

Now we can continue with the main proof. We already know (v,v/,W.,m) €
[[Bp/ﬂ{}. Because p’ C A, this means that (v,v/,W, m) € [B]+. By
(v,v',W,m) € [A]5. From this we can directly follow (v,v',W,m) € [AP]3
because p C A by assumption. The goal follows by [Lemma 8.25| and [Lemma §8.24]
i. pZ A.
Because p £ A, it suffices to show
x (v, W0, U{l,t},m’) € [A]v and

* (W, W .0, U{l',1}m’) € ’—A]V

By it suffices to show
x (v, W.01,m’) € [A]ly and

* (v, W'.05,m') € [A]y.
From (v,v/,W, m) € [BP' |4 we get
* (v, W.0;,m’) € [B]y and

* (V,W'.02,m’) € [B]v

by [Lemma 8.22 the definition of [BP']y and We get the remaining
subgoals by |[Lemma 8.6
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— (S1U{l— (v,1)},m')>W’.0; U{l,t}. For this we have to show
x dom(W’.0; U{l,t}) € dom(S; U{l — (v,T)}).
(S1,82,m" )W’
dom(W'.0; U{l,t}) = dom(W’.01) U {1} - dom(S;) U{l} = dom(S; U
{L— (v,0)}.
* V1 € dom(W’.0,U{L, T}).(S1U{l — (v, T)} (1), W’.0.U{L, T}, m’) € [W’'.0,U{L, T} (1) ]v.
Let 1”7 € dom(W’.0; U{l,1}). There are two cases:

(a) 17 # 1. In this case 1”7 € dom(W’.01). By assumption (S, Sz, m’) £ W', Hence also
(S1,m')>W’.0;. Therefore in particular (S;(1”), W’'.0,,m’) € [W’.01(1”)]v. Because
1" 21 this is equivalent to (S U{l— (v,t)}(1"),W’.0;,m’) € [W'.0; U{l,t} (1")]v.
We get the claim by

(b) 1”7 = 1. In this case the goal simplifies to (v, W’.0; U{l,t},m’) € [t|v. By as-
sumption (v,v/,W,m) € [[BP/W]{}. Bytherefore (v, W.0;,m) € [B? y.
By the definitions of [BP']y we directly get (v, W.0;,m) € [B]y. From that we get
(v,W.0;,m) € [A]y by [Lemma 8.6] We get (v, W.0;,m) € [AP]y by definition. The
goal follows from [Lemma 8.4} and [Lemma 7.2|

* VI € dom(W’.0; U{l, t}). W’.0; U{L, T} (1) = type(S; U{l — (v,T)},1").

Let 1” € dom(W’.0; U{l,1}). There are two cases:

(a) 1”7 # 1. In this case 1” € dom(W’.0;). By assumption (S1,S2, m’) £ W’. Hence
W’.01(1”) = type(S1,1”). Because 1” # 1 this is equivalent to the goal.
(b) 1”7 =1. In this case the goal simplifies to T = T. This is clearly the case.
— (SoU{l/ — (v, 1)}, m") > W'.0, U{l',t}. For this we have to show
x dom(W’.0o U{l’,t}) C dom (S U{l' — (v/,1)}).
(S1,S2,m")BW’

dom(W’.0, U{l',t}) = dom(W’.05) U{l'} - dom(S2) U{l'} = dom(Sz U
{U' — (v, 7)}.

* VI € dom(W’.0; U {l',T}).(So U{l' — (v, T)}(1”),W'.0, U {l',t},m') € [W'.0; U
U, 7} (1")]v. Let 1”7 € dom(W’.02 U{l’,t}). There are two cases:

(a) 1”7 £ 1. In this case 1” € dom(W’.03). By assumption (S1, Sz, m’) Ew. Hence also
(So, m')>W’.05. Therefore in particular (So(1”), W’.05, m’) € [W’.02(1”)]v. Because
1" # 1/ this is equivalent to (S;U{l" — (v, T)} (17), W'.02, m’) € [W'.0,U{l, T} (1) ]v.
We get the claim by

(b) 1” =1'. In this case the goal simplifies to (v/, W’.0, U{l’, T}, m’) € [T]y. By assump-
tion (v,v/,W,m) € [[BP/]]{}. Bytherefore (v/,W.0,,m) € [BP'|y.By
the definitions of [BP ]y we directly get (v/,W.85,m) € [B]y. From that we get
(v/,W.03,m) € [A]y by [Lemma 8.6, We get (v/,W.05,m) € [AP]y by definition.
The goal follows from [Lemma 8.4] and [Lemma 7.2|

x V1”7 € dom(W'.0, U{l', t}). W'.0, U{l', T} (1”) = type(S2 U{l" — (v/,p)},1”).

Let 1”7 € dom(W’.0, U{l’,T}). There are two cases:

(a) 1”7 # V. In this case 1”7 € dom(W'.03). By assumption (Si,Ss, m’) s W’. Hence
W’.02(1") = type(S2,1”). Because 1” # 1’ this is equivalent to the goal.
(b) 1”7 =1'. In this case the goal simplifies to T = 7. This is clearly the case.

o L) = poaay WV
We do case analysis on the visibility of p.
(a) p Z A. Because pol(t) =p we get the claim by high.
(b) p C A: By extend-t it suffices to show
- (L) e W .BU{(1,1")}. This is obvious.
— yWHBUILUI A 7 By [Lemma 8.45|it suffices to show vW'F~A v/ We do case analysis
on L[(V) %6\1/’.[5 L’E(V/) V Zl C AV ZQ C A.

i le(v) & g Lz(v'). This must have been derived by extend-t. Because T = AP. We
get the claim by inversion.
ii. L1 CEAV I, CA

First we show that p’ C A: By assumptionX; D X, %5 D X/ p/(Z) C pand p’(X’) C p.

Hence by and transitivity (Lemma 4.1
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w  p/(Z1) CEpand
In both cases (£; C A and £y C A) we get p’ C A by [Lemma 8.46

Remember that by assumption firstorder(t). Hence by [Lemma 8.44|it suffices to show
(v,v, W' 'm) € [t]5. By |Lemma 8.25 it suffices to show (v,v/,W,m) € [t]#. We

already know (v,v/,W,m) € [t']{. Because T/ = BP' this gives us (v,v',W,m) €
[BP'#. Because p’ C A we have (v,v',W,m) € [B]{. By [Lemma 8.31] we get
(v,v,W,m) € JAT#. (v,v/,W,m) € [AP]+ follows because p C A. As T = AP this
shows the goal.

o (LU, (W.ou{l,t}, W .0, U{l',T}), W .BU{(L1")}),Z, L', m') € ﬂ—(ref(’t))J“ﬂé.
It suffices to show (1,1, (W’.0; U{l, AP}, W".0, U{l", AP}, W'.BU{(1,1")}), m’) € [(ref(AP))+]+.

Because | C A (Lemma 4.19) it suffices to show (1,1, (W’.0; U{l, AP}, W'.0, U{lU', AP} W' B U
{(L1)}), m’) € [ref(AP)]%. This means we need to show

— W0, U{L,AP}(1) = AP = W'.0, U{l', AP} (1l’). This is clearly the case.
— (L) e W.BU{(1,1")}. This is clearly the case.

O

Lemma 8.48. If (e,e’, W, 2,5/, m) € [(ref T)P]#, Z 4 &/, p C Tand t/ <: 7, then (le,!e/,W, 2,5/ m) €
[1¢.

Proof. By induction on m. It suffices to show (le,!e’, W, X X/ 'm) € [1] éﬁ. We already have X ~4 L’ by
assumption. Let X1, X5 such that

X, D1,
e, D1,
o 1~y ko,
W’ m’ such that
e m/ < m,
e W OW,
and Si, S5 such that

hd (817827m/) ‘é’wl
There are two cases:
1. (e,e/,W, X, 2", m) € [(ref T')p—ﬂéﬁ. There are three additional cases:
e1 €V N eag VA
Vel,S1, 2], w,es, 2, S5 w.
Tikep, Sy —=el, S| A
(a) (e;e’) €< (er,e2) | 5,k ey, Sy EEEN ey, S4—
(w %\//LV'-B W VI CAVIICA)—
IWT W IWIA (S],85m!) B (W) A
Wy g W A (ef,e5, W, 2,5/ m') € [(ref T)PT¢

In this case it is suffices to show
e1 ¢V N exg VA

/ i / / !/ / !/
Ve, S1, 21, w, ey, 25, S5, w'.

w;X]
2 '—61, S :]>€{, S{ A\

(le,le’) € ¢ (e1,e2) | . F e, Sy RN e}, Sh—
(w %ﬁ/,‘ﬁ W'VIICAVIICA) —

A
IW' W IW'A (1,85, m/) > (W) A
WXy g w' A (ef,e5, W, 2,5/ m') € []¢
Clearly neither le nor le’ is a value. So let w,w’,ep, e, L1, 25,51, S5 such that
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e le ¥y, S~ eB,S{,w,Z{
. !GI,ZQ,SQ - eé,Sé,w’,Zé

Because e and e’ are not values the reductions must have happened with EDeref. Hence by
inversion

e e, X,S ey S|, w, X
e e X5, So e}, Shw' X}
e ep :!eo
e ¢p =le]
Also assume w z(}v,.ﬁ w'VIICA V I C A. This directly gives us a W’ such that
e W' W/
o (S],S5,m)EW”,
* w={y, s w, and
e (eg,ef, W' L, 5/ m/) € [(ref T)P]¢.
It suffices to show
e W/’ JW’. We already know that.
e (81,S4,m) EW”. We already know that.
o W=y, s w'. We already know that.
o (leg,leg, W”, 2,5/, m/) € [t]# We get this by induction.
e1 ¢V AVey, S|, 2], w.
Sk er, S1 =2l e, 8! s —(pol(w) T A) A
(BW.W" JW' A (S],Ss,m/) & (W) A
(e1,e2, W 5,5/ m’) € [(ref T/)P]¢)

In this case it suffices to show
e1 ¢V AVe{,S], 2], w.

Sk er, S1 =55 e, S — —(pol(w) T A) A

(e,e’) € ¢ (e1,ez)

(le,'e’) € < (eq, ea) u
FAW"W"” JW’' A (S1,So, m') > (W) A
(e1,e2, W 5,5/ m’) € [t]£)
It is clear that le is not a value. So let w,eg, X{,S] such that
e leXi,S1 >ep,ST,w, X}
Because e is not a value, the reduction must have happened with EDeref. By inversion
e e X,S ey S|, w, X
o e =leg
Hence
e ~(pol(w) C A)
and there is an W such that
e W' W
o (S],Sy,m/) B W”
e (eg, e/, W" L. 5/ m') € [(ref T')PT#)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.
e (51,52, m’) Ewr, We already know this.
o (leg,le/,W" £, 5/ m') € [t]£. We get this using the induction hypothesis.
e &V AVel, S 1) w.

e ederey| T2Fens: L el S —(pol(w) CA) A
9 1,€2
(AW W"” I W' A (S1,S4,m/) & W” A
(e1, ey, W 2,5/ m') € [(ref T/)P]¢)
In this case it suffices to show
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ea €V AVe, S5 w.

To b en, Sp s e S5 s —(pol(w) T A) A
(le,le) € < (e, e2)

EW W 3 W' A (S1,85,m') 5 W" A
(er, ey, W =, 5/ m') € [t]¢)
It is clear that !e’ is not a value. So let w’, ep, L5, S5 such that
o le/ X5, S, - e@SQw’,Zé
The reduction must have happened with EDeref. By inversion
e e X5, S e}, Shw’ X}
e e =leg
Hence
e —(pol{w) C A)
and there is an W/ such that
e W/ OIW
o (S1,S,,m/) B W”
o (e,el,W" £ 5/ m') € [(ref T/)P]&)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.
e (S4,S4,m) EwW”. We already know this.
o (le,lef,W” £ 5/ m') € [t]#. We get this using the induction hypothesis.
(e,e/,W,Z,5,m) € {(v,v/,W,Z1,%5,m) | (v,v/,W,m) € [(ref T')P]5}

Consequently e and e’ are values v and v/, respectively and (v,v/, W, m) € [(ref t/)P]4.

In this case it is suffices to show
e1 gV N e g VA

vel, S, 5, w, e}, 4,84, .
Tikern, S == e, S| A
(v,W) e (e ea) | I,k ey, S; === e}, S) —
(w %(,qv/.ﬁ WVIICAVIICA) —
A
IW' W IW'A (51,85, m") > (W) A
w ga/”.ﬁ W’ A (e{,eé,W”,Z,Z/,m’) € ”VT—”{}
Clearly neither v nor v’ is a value. So let w,w’, ep,eg, 1,235,851, S/ such that

o v, X1, S >ep, S, w, 2]

o V' 55,55 = e, S5, w' I
Because v and v’ are values the reductions must have happened with EDerefBeta. Hence by
inversion there are 1,1’,vg, v}, T, " such that

o 1l — (vo,T") €S,

o U/ — (v}, T") €Sy

.Sizsl
.Sé:SQ
02{121
.Zé:z‘:g

® € =V

. eé:v()

e w=¢=w’'
e v=1
.V/:l/

So the reductions are really

hd !1721551 >~ vOaslaevzl
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. !1/, Y9,S9 > V(/J, So,€,Xo
Also assume € %(,qv,'ﬁ eVIICA V IJCA. It suffices to show
e W/ J W' We get this by [Lemma 7.2
e (S1,S,,m’) EW’ . We already know that.
e c &{,‘V,_B €. We get this by refl.
o (vo,vo, W, L, 5/ m') € [t]¢. It suffices to show (vo,v), W',m’) € [t]4. By assumption
(LU, W, m) € [(ref T/)P]5. We do case analysis on whether p C A or not:
i. p C A: In this case (1,1, W,m) € [ref t']+. By also (LLU,W',m’) €
[ref t/]+. Therefore
- W’Bl(l) =1 = W’.eg(l/).
— (LV) e W.B.

Because (S1,S2, m’) EW in particular
(511, So(), W, m) € [T
By assumption 1 — (vg,t”) € S1 and U/ — (v{, ") € S2. So this simplifies to
— (vo,vp, W', m/) € [T'¢
We get the goal by
ii. pZ A: T has the form A9. We get
— (LU, W/,m’) € [(ref T)P]{ by [Lemma 8.25 and [Lemma 8.24
Because p [Z A this means
— (LW'.0;,m’) € [ref ']y and
- (V,W'.02,m’) € [ref T'vy.
Hence
- W'.0:(1) =1’ and
— W8, (V) =

We know (S1,S2, m’) W In particular this means
— (S1,m')>W’'.0; and
— (Sg,m') >W'.0,.
Because W’.01(1) =1t/ = W’.05(l’) in particular 1 € dom(W’.0;) and 1’ € dom(W’.0,).
Therefore the well formedness gives us
- (S1(V,W.8;,m’) € [W.0:(1)]v and
— (S2(V),W" .02, m') € [W.02(1)]v.
With the knowledge we already have this simplifies to
— (vo,W'.0;,m’) € [t']v and
— (v§, W82, m’) € [t]y.
Because T/ <: T and T = A9 we get by inversion of sub-policy
— 1/ =BY,
— B<:A, and
-9q'Cq
So the definition of [B9']y we get
— (vo, W'.0;,m’) € [B]y and
- (v{,W'.03,m’) € [B]y.
By assumption p C 1. Hence also T [Z A, because otherwise we would have p C A by
transitivity This means q [Z A. Hence it suffices to show
— (vo, W".01,m’) € [A]y.
We get this by
— (V§,W".03,m') € [A]v.
We get this by

O

Lemma 8.49. If (ej,ej,W, 2,2/, m) € [(ref T/)P]¢, (eq,ed, W, 2,2/ m) € [t]#, p C 7/, ©(2) <: 7/,
T(X) <:t' and Z &4 X/, then
(e1:=eq, e :=ej W, 2, 5/ m) € Junit-]£.
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Proof. By induction on m. It suffices to show (e; := eq,e] == e), W, 2,2, m) € [[unitlﬂﬁlﬁ. We already
have ~ ~4 L’ by assumption. Let X, X5 such that

e X D72,
e, D1,

o X~y Lo,
W', m’ such that
e m/ < m,

o« W W,

and S, Sy such that

A
° (817 SQ, m’) > W’
There are two cases:

1. (e1,ef, W, L, X/, m) € [(ref T')pﬂéﬁ. This leaves us with three further cases:

e ¢V A esd VA
Vei,S1, 2], w, ey, 24, S5, w.
Sk er, S =5h el SIA

w’; X

(a) (e1,e1) € q (e1,e2) | 5,k ey, Sy —== e}, S} —

(w x(,lv,,ﬁ WVIICAVIICA)—

IWT WY IWA (S],S4,m) B (W) A

Wy g WA (ef,e5, W, 2,5/ m') € [(reft/)PT¢

In that case it suffices to show

€1 ¢ VA (] ¢ VA
Vel,S1, 2], w,es, 2, S5 w'.

.Y/
w;X ]

2 |—€1,51:>€{,S{/\

(e1:=ezef:=e5) € ¢ (e1,e2) | I, ey, Sy ——eh S} —
(w %W"B W' VIICAVIICA) —

A
IW' W IJW'A (S7,S5,m/) > (W) A
Wy g w' A (ef,e5, W, 2,5/ m') € [unitt]¢
Neither e; := e nor ef := e} is a value. So let w,w’,eg,eé, 1,24,581,S% such that

e e :=¢ey,X1,5 > ep,S,,w, I}

e el :=e) Xy, Sy~ e[’S,Sé,w’,Zé
Since neither e; nor ef is a value and therefore also not a location, the reductions must have
happened with Eassignl. Hence by inversion

e e,%,51 > e,S,w, X}
o e{,%5,Sy = ¢ef,S5, w', L)
e ep=e =6
® ep=e| =g
Also let w %(,qv/.ﬁ w'VIICA V EfC A This directly gives us a W” such that
o« W' IW/,
o (S],S5,m)EwW”,
* W=y, s w, and
o (e, e[, W L, 5/ m') € [(ref t/)P]¢
It suffices to show

e W’ J W’ We already know that.
e (S7,S4,m/) EwW”. We already know that.
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o w Eﬁv”ﬁ w’. We already know that.

o (er:=eg,ef :=e,, W £ 5/ m') € [unitt]# We have W” J W by transitivity (Lemma 7.2)).
Hence we also have (e, e5, W, £, £/ m') € [1]¢ by [Lemma 8.29] We get the claim by in-

duction.
e1 ¢V AVei,S1,2, w.

/
w;z

Y ke, Si==e¢e], S = ~(pol(w) CA) A

EW” W TW' A (S],So,m’) & (W) A
(ef,e2, W 2,5/ m’') € [(ref T')P]¢)
In this case it suffices to show

(b) (e1,e1) € ¢ (e, e2)

e1 ¢V AVei,S], 2, w.
w; X}

Yike, St =—=v¢{, S| = ~(pol(w) TA) A

(AW W" T W' A (S],Ss,m) & (W) A
(e1,e2, W 2,5/ m’) € [unitt]#)

(e1 :=eq,e] :=e)) € ¢ (e1,e2)

It is clear that e, := e, is not a value. So let w,eg,X{,S] such that
o e :=e9,%1,51 > ep,ST,w,X]
By assumption e; is not a value and therefore also not a location. Hence the reduction must
have happened with Eassignl. By inversion
e e,%,S1 e, S],w, X
e eg=¢e =€
From our assumption we get
e ~(pol(w) E A)
and there is an W such that
e W/ OIW
o (S, Sy, m/) & W”
o (e, e}, W £,/ m') € [(ref T')P]¢
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.
e (51,S2,m’) EW”. We already know this.

o (ep:=eg,ef :=e}, L, L m') € [unitt]#. We know (e, e, W, £, £/ m’) € [(ref T/)P]{.

We get (e2,e5, W, 2,2/ m/) € [T]¢ by |[Lemma 8.29, The goal follows using the induction

hypothesis.
es €V AVel, S5 T w.

@ (el e (eren | 2252 L el Sh s —(pol(w) T A) A
1,1 1,2
AW W” IW' A (S1,85,m’) & W A
(e1, ey, W .5/ m’) € [(ref T')P]¢)
In this case it suffices to show
ea &V AVel, S, 2. w.
(e = eq,e! = el) € 4 ey, e0) Ty b ey, S —= ey, SL— —(pol(w) CZ A) A
1-=€2,6 .= 6 1,€2
(BW".W"” I W' A (S, S5, m/) & W” A
(e1,ef, W 5,5/ m’) € [unitt]#)

Clearly e} := ej is not a value. So let w,ep, 23,55 such that
e e :=¢e5,%2,5 - e;, 55w, L5

By assumption e is not a value and therefore also not a location. Hence the reduction must
have happened with Eassignl. By inversion

!/ !/ ! !/
b 61322782 > 613827('0322
° e =e[i=¢)

From our assumption we get
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e ~(pol(w) EA)

and there is an W’ such that

e W' OW

o (S1,SL,m/) b W”

e (e, e[, W" £,/ m') € [(ref T')P]¢&
It suffices to show the following:

e —(pol(w) C A). We already know this
e W/’ JW’. We already know this.

e (54,S4,m’) Ewr. We already know this.

o (e := ez, ef == e5, T, m') € [unitt]f. We know (e1,e/,W”, £, £, m’) € [(ref T/)P]{.
We get (e2,e5, W, 2,2/ m/) € [T]¢ by |[Lemma 8.29, The goal follows using the induction

hypothesis.

2' (elae{awvzazlam) S {(V7V/7W52017ZC27m) | (V7VI7W7 m) € W(Tef T/JP‘H‘G}

Hence e; and ef are values vi and v/ respectively such that (vi,v{, W, m) € [(ref t/)P]. Either p C
A or p iZ A. In the first case (vi,v], W, m) € [ref T/]# and in the second case both (vi, W.01,m) €
[ref /]y and (vi,W.03,m) € [ref T']v. In both cases this means that there are locations 1 and 1/

such that

° 61:1,

e ¢f =1 and

° W61(1) =1 = Weg(ll)

This leaves us with two cases again:

(a) (e2, €4, W, X, 2, m) € [T] ﬁﬁ. There are again further cases:

i. (e2,e3) €< (er,e2)

(L:i=eg, =€) €

Clearly 1:= ey and 1’ ;= ej are not values. So let w,w’, ep, eé, ¥1,%4.S1,S4 such that

e1 gV N e g VA
Veq, i,Z{,LU,?é,ZQ,Sé,w/.
Tikep, Sy —=el, S| A
Yo ke, So :>(U - eé, Sé —
(w zﬁ/,_ﬁ W' VI CAVIICA)—
A
IW' W IW'A (S1,S5,m) > (W) A
w &fvﬁ,,,‘ﬁ W' A (e],eb, W 5 5/ m') e [T]#
In that case it suffices to show

(e1,e2)

el gV A e d VA
/ li !/ / / / !/
veh 17217(U562a22a523u) .

Tikep, Sy —=el S| A
2o e, S :(U s eé, Sé —
(wrfl, g W VI EAVIICA) —

W/ W IWA (S, S5, m) B (W) A
Wy g WA (ef,e5, W, 2,5/ m') € [unitt]¢

o li=¢e9,%1,51 > ep,S1,w, X}
o l':=¢e5,%5,5; = e, S5, w', X5

Since ey and e) are not values by assumption, the reductions must have happened with
Eassignr. Hence by inversion

! /
® ey, %,S5 - eT,Sl,w,Zl

! ! !/ ! !
b 62722782 -~ er7327w 722

o eg=1l:=e
eep=1:=¢f

Also let w %ﬂ,,'ﬁ w'VIICA V ) C A. This directly gives us a W” such that
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ii. (e2,e3) € < (e1,e2)

iii.

o W/ W/,
o (S],85,m) W,
o WAy, g w, and
e (e, e, W' L5 m')e [t]#
It suffices to show
e W’ J W’ We already know that.

A
o (51,85, m') > W”. We already know that.
o w &ﬁ/,,_ﬁ w’. We already know that.

o (L := e, :== e/, WL 2 m) € [unith)]¢ We have W” I W by transitivity

(Lemma 7.2)). Hence we also have (1,1, W” £ 5/ m') € [(ref T/)P]# by [Lemma 8.29
We get the claim by induction.

e1 ¢V AVey, S, 2], w.
Tk er, S1 =55 e, ! — —(pol(w) T A) A

EW7W" JW' A (8], S5, m) & (W) A
(617625W,/’Z7z/7m/) G WTﬂ‘é)
In this case it suffices to show
e1 ¢V AVey, S, 2], w.
i key, S1 SN e], S1 = —(pol(w) T A) A
EW7W" JW' A (S],Ss,m) & (W) A
(e{,eQ;W”aZaZ/am/) S H’u'nltl_‘"‘é)
It is clear that 1:= ey is not a value. So let w,eg,X{,S] such that

o li=¢e9,21,51 > ep, S, w, X}

(L:i=e2, 1" :=ej) € { (e1,e2)

Because es is not a value the reduction must have happened with Eassignr. By inversion
e e,%,5 =e,S],w, ]
o eg=1l:=e
From our assumption we get
e ~(pol(w) C A)
and there is an W such that
o« W/ IW/
o (SI,So,m/) b W"
o (er,ef, W' L 5/ m) e [t]¢
It suffices to show the following:
e —(pol(w) E A). We already know this
e W’ O W’ We already know this.

e (S1,S2,m’) EwW”. We already know this.

o (Li=e, =65, 2,2/ m) € [unitt]¢. We know (e,,es, W’ £, 5/ m') € [t]#). We
get (LU, W" 2.5/ m’') € [(ref T/)P]# by [Lemma 8.29, The goal follows using the
induction hypothesis.

ea &V AVeb, S5, 20 w.

So b ey, Sy 22y e Sh s —(pol(w) C A) A

(e2,e3) € q (e1,e2) M

(EW”W” IW' A (S, S5, m/) E W7 A

(el,eé,W”,Z,Z/,m’) S WTﬂé)

In this case it suffices to show

ea &V AVeb, S5, 20, w.

Tokeq, S %e’,S'—)—' ol(w)Z A) A

(L:=-eq,l':=¢€)) € < (e1,€2) R 22 (pA (W) EA)

(EW7W” IW' A (S, S4,m/) E W7 A

(er, ey, W = 5/ m’) € [unitt]#)

It is clear that 1" := ej is not a value. So let w, ey, X5, S5 such that
o U':=e), %5, Sy - ep, 55, w, L

Because e} is not a value, the reduction must have happened with Eassignr. By inversion
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e e}, Y5,Sy = el,S) w,X)
eecp=1:=¢;
From our assumption we get
e ~(pol{w) C A)
and there is an W/ such that
o« W/ OW/
o (S1,S5,m") e W”
o (ez,el, W/ L 5/ m')e [t]#
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ O W’ We already know this.

e (51,85, m') EW”. We already know this.

o (Li=ey,l/:=¢e/, 2,2/, m) € [unitt]£. We know (es, e/, W £,/ m’') € [t]#. We
get (LU,W" 2.5/ m') € [(ref ©/)P]# by [Lemma 8.29, The goal follows using the
induction hypothesis.

(b) (eQ,eé,W,Z,Z',m) S {(V,V’,W, ZC7m) | (V7V17W3 m) € ”—T—”‘\/}}

In this case es and e} are values vo and v}, respectively such that (ve,vs, W, m) € [T]5.

It suffices to show
e1 ¢V N exg VA

Vel,SI, 5/ w,eb, ), S} .
Siken, Si 2l e, SIA
(Li=vo, " :=v5) € ¢ (e1,e2) | 7, F es, Sy CREE N e}, Sh —

(w z\f}v,_ﬁ W' VI CAVIICA)—

IWTWY IWA (S],85,m )ﬁ(w“) A
Wy g WA (ef,e5, W, 1,1/ m') € []¢

It is clear that both 1:= vy and ' := v; are not values. So let w,w’, e, ep, L1, %5,57,55 such
that

o 1:=v9,21,51 > ep,S7, w, X}

o 1 :=v), 55, Sy > eé,Sé,w’,Zé
Since vo and v} are values, the reductions must have happened with Eassign. Hence

e le dom(Sy)

e ' € dom(Ss)

° ep =)

. eg, = ()

b = ltype(Sl, )(VQ)
o W =1, (V2)

. Si = S1[l— (v2, type(S1, 1))]
o S5 =Syl — (v, type(Ss,1'))]
e X=X,
e X=1,
So the reductions are really
o L:i=v5,21,5; > (),S1[l— (v, type(S1, V)], Liype(s, 1) (v2), 21

ol = VéaZQaSQ - ()752[1/ — (Véatype(SQall))]a]'{ype (Sa,17) ( 5)522

Also assume Lyype(s,.1)(va) %(}V,ﬁ Uype(son(Va) VI AV I A We know t(X) <: 7/,
T(X') <: 1/, and p C t’. More specifically T has the form A9 and T’ has the form B" and therefore
A9(X) <:B", A9(X') <: B", and p C B". Hence

e q(X)Cr,

e q(X)Cr
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e A <:B, and
epL.

By assumption
e W.0,(1) =1/ =B".

Because W/ J W and W’.0,(1) = W’.05(1), also
o W.0,(1) = B = W .0,(l).

From (S1,S2,m’) EW we get (S1,m’)>W'.0; and (Sg, m’) > W’'.0,. Consequently
e W.0,(1) = type(Sy,1) and
e W .05(l') =type(Sa, V).
We already know what W’.01(1) and W’.05(1’) are, namely B". Hence
e type(Sy,1) =B" and
e type(Sy, 1) =B,
It suffices to show

e W/ JW'. We get this by reflexivity (Lemma 7.2)).
L4 (Sl[l — (V27type(5171))]7 SQHI —_ (vé7type(s27l/))]a m/) ‘é W/'

We have to show
- W.BCW.0; x W.0,.
We get this from (S1, Sy, m’) Ewr.
- V(l1,1l) e W.B. W.0:(11) = W'.02(1x) A
(S1[t— (vo, type(S1, V)I(L1), S2ll/ — (va, type(S1, U)](12), W/ m') € [W'.0:(L)]5.

Let (L1, 1) € W'.B. We get W’.0,(Ly) = W'.05(Ly) from (Sy,Ss, m) & W’. All that re-
mains to be shown is (S1[1 — (vo, type(S1, 1))1(11), S2[l/ — (v4, type(S1, U'))](12), W ,m') €
[W’.01(11)]%. There are four cases:

i. 11 # land ly # 1. Because (S1,Sy, m’) & w we know W'. C dom(W.0;) x
dom(W.05). We also get
* (S1(L1),S2(l2), W/, m') € W' .01 (1) T4

from (S1,S2,m’) £ W’ Because l; # 1l and 1l # U this is equivalent to the remaining
subgoal.
ii. iy =land 1y #1".
In this case it suffices to show (v2, Sa(l2), W/, m’) € [B"]#. We do case analysis on
the visibility of r.
A. v C A: We will show that this is impossible.

By transitivitywe get p C A. By assumption (1,1, W, m) € [(ref T/)P]+.
Because p C A (1,1, W, m) € [ref t/]#. By|Lemma 8.25|(1,1", W/, m) € [ref t']5.
In particular this means
= (LU) e W.B.
By assumption W’'.3 is an injection and therefore in particular a function. Hence
there can be no other 1” # 1’ such that (1,1”) € W’.f. But by assumption
(Lly) € W'.p and 1o #1'. 7.

B. r Z A In this case it suffices to show
= (v, W01, m’) € [B]y. Wealready know (vo,v5, W, m) € [t]#. By|Lemma 8.22)
andwe have (vo, W'.0;, m’) € [T]v. Ast = A9 this gives us (vo, W'.0;,m’) €
[Alv. The goal follows by
w o (So(le), W', m') € [B]y. Because (Sg, m')>W’.05 we have (Sa(l2), W.02, m’) €
[W'.05(12)]v. By assumption (1,13) € W’.3. Because (S1,S2, m’) £ W’ this means
that W’.0:(1) = W’.05(1ly). We have already seen that W’.0:(1) = B". Hence
(S2(1la), W’'.02, m’) € [B"]y. The goal follows by the definition of [B"]y.
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iii. 1 # land 1l = V. By assumption (1;,1') € W’.3. Because (S1,S2, m’) LW’ this
means that W’.01(1;) = W’.05(1’). We have already seen that W’.0,(1’) = B". Hence
it suffices to show (S1(l1),vs, W/, m’) € [B"]#. We do case analysis on the visibility

of r.
A. v C A: We will show that this is impossible. By transitivity we get
pEA

By assumption (1,1, W, m) € [(ref t/)P]5i. Becausep C A (I, 1/, W, m) € [ref T/ 4.
By (L,V,W',m) € [ref t/]#. In particular this means
= (LU)EW.B.
By assumption W’.p is an injection. Hence there can be no other 1” # 1 such that
(1”,1") € W’'.p. But by assumption (1;,1') € W/. and 1; # L. 4.
B. v [Z A In this case it suffices to show
w o (S1(L), W, m') € [B]y.
Because (S, m’)>W’.0; we have (S1(11), W'.01,m’) € [W’.0;(l1)]v. W .0.(L1) =
B". Hence (S1(11),W’.0;,m’) € [B"]y. The goal follows by the definition of [B"|v.
= (v, W.05,m') € [B]y.
We already know (v2,v5, W,m) € [t]#. By [Lemma 8.22| and [Lemma 8.4 we have
(v, W' .05, m’) € [T]v. As T = A9 this gives us (vj, W'.03,m’) € [A]y. The goal
follows by
iv. (1,1z) = (L1).
The goal simplifies to (v2,v5, W/, m') € [BT]5.
We do case analysis on whether r C A or not:
A.rCA.
We do case analysis on lyype(s, 1) (V2) %{,qv/.ﬁ Léype(Sg,l’)(vé) VI, CAVI,CA
This is the same as lgr(va) %(/qv/.ﬁ - (vy)) VI, CAV I, C A
«: lpr(va) Ay g Lge (V3).

From (ve,v5, W, m) € [t]{ or rather (vo,v}, W, m) € [A9] we get

= (vg,W’.Gl,m’) € [A—IV and

w (v, W.0,,m') € [Aly

by [Cemma 8.22the definition of [A9]y and From this we get

w (v, W.0;,m’) € [B]v and

= (vé,W’.GQ,m’) S [B]V

by

w (v, W.0;,m’) € [B"]y and

w o (v, W.0,,m') € [B]y

follows directly from the definition of [B"]vy. The only rule with which lg+ (v2) zﬁ/,_ﬁ
15+ (v4) can be derived is extend-t as it is clear from the structure of the observa-
tions that neither refl is not applicable. high is also not applicable because r C A
by assumption.

By inversion

’
e W 'B:{;T v

Also remember that we have restricted ourselves to first order state. Therefore we

also have firstorder(B"). Therefore [Lemma 8.43| gives us (v2,v5, W/, m’) € [B"]4.

[31):1 E.A\/ZQ E.A

First we show that q C A: By assumption £; D X, X, D X/ q(X£) Crand q(X') C 7.

Hence by and transitivity (Lemma 4.1)

w (X)) Crand
i () T

In both cases (£; E A and Xy C A) we get ¢ C A by [Lemma 8.46

Now we can continue with the main proof. We already know (vo,vi, W, m) €
[A9]4. Because q C A, this means that (vo,v5, W, m) € [A]3{. By [Lemma 8.31
(v2,v5,W,m) € [B]#f. From this we can directly follow (v2,v5, W, m) € [B"]3
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because r C A by assumption. The goal follows by [Lemma 8.25[ and [Lemma 8.24]
B. rZA.
Because 1 [Z A, it suffices to show
(v, W.0,,m’) € [B]vy and
= (v, W.0s,m') € [B]y.
From (vg,v5, W,m) € [A9]{ we get
o (v, W.0;,m’) € [A]y and
o (v, W.0,m') € [Aly
by [Lemma 8.22] the definition of [A9]y, We get the remaining subgoals
by Comma 5.0,
— (S1[1 — (va,type(S1,1))], m’) > W’.0;. For this we have to show
* dom(W'.0;) C dom(S [L— (va, type(S1, 1))]).
W
domw’.6,) ™ dom($1) € dom(S11— (va, type(Sy, D)),
x V1”7 € dom(W’.01).(S1[L — (va, type(S1, )I(V"),W’.0;,m’') € [W.0,(1")]v. Let
1" € dom(W’.01). There are two cases:

i. 1”7 # 1. By assumption (31,52, )éW’ Hence also (S1, m’)>W’.0;. Therefore in
particular (S1(1”),W’.0;,m’) € [W'.0:(1”)]v. Because 1" # 1 this is equivalent to
(S1l— (vo, type(Sy, )IL"), W’ .81, m') € [W.8:(17)]v.

ii. 1”7 = 1. In this case the goal simplifies to (v, W’.0;, m’) € [B"]y. By assumption
(v2,v5,W,m) € [A9]4#. By therefore (VQ,W.el,m) € [A9]y. By

the deﬁnitions of [Aq]v we directly get (vo, W.01, m) € [A]y. From that we get
(vo, W.01,m 1v by [Lemma 8.6] We get \12,W617 m) € [B"]y by definition.

The goal follows from [Lemma 8.4 and [Lemma 7.2|
* V1 € dom(W’.01).W'.0,(1") = type(S1[l — (va, type(S1,1))],17).
Let 1”7 € dom(W’.01). There are two cases:
i. 1” # 1. By assumption (Sl,SQ,m’)éW’. Hence W’.01(1”) = type(S1,1”). Because
1” # 1 this is equivalent to the goal.
ii. 1”7 =1. In this case the goal simplifies to W’.01(1) = type(S1,1). We get this from
(Sl, 527 m’), ljbl A%
— (Sl — (vi,type(S7,1))],m') > W’.05. For this we have to show
* dom(W’.02) C dom(Sa[l’ — (vi, type(S{,1))]).

(S1,S2,m/)EwW’
dom(W’.65) - dom(Sz) € dom(Sa[l" — (v4, type(S{, U))]).

x VI € dom(W’.05).(S2[l/ — (vi, type(S1, UNIV), W82, m’) € [W'.05(1")]y. Let
1” € dom(W'.05). There are two cases:

i. 1”7 #1'. By assumption (S1,Ss, m’) £ W’. Hence also (So,m’) > W’.05. Therefore
in particular (S2(1”), W’.05,m’) € [W’.02(1"”)]v. Because 1” #£ 1’ this is equivalent
to (S2(l/ — (v4, type(S1, UNI(1"), W .02, m') € [W.02(1")]v

ii. 1” =1'. In this case the goal simplifies to (v4, W’.05, m’) € [B"]y. By assumption
(v2, vy, W, m) € JA4]¢. By [Lemma 8.22] therefore (v§, W.05,m) € [A9]y. By
the definitions of [A9]y we directly get (v5, W.02,m) € [A]y. From that we get
(vh,W.02,m) € [B]y by [Lemma 8.61 We get (v5, W.02,m) € [B"]y by definition.
The goal follows from [Lemma 8.4] and [Lemma 7.2}

x V1”7 € dom(W’.02). W'.05(1") = type(Sa2[l’ — (v4,pol(S, 1)), 17).

Let 1”7 € dom(W’.05). There are two cases:

i. 1” #1'. By assumption (Sl,Sg,m’)§W’. Hence W'.05(1”) = type(S2,1”). Because
1" #£ U this is equivalent to the goal.

ii. 1”7 = 1. In this case the goal simplifies to W'.05(1') = type(Sz,1’). We get this
from (51,52, m)eEw.

® Liype(s,,1(v2) = = B Liype 52,1,)(\)5).

This is the same as showing lgr(vo) = W, 15+ (v5). We do case analysis on the visibility of
T.

i. 1 IZ A: In this case we get the claim by high.
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ii. 1 C A: By extend-t it suffices to show

— (1,1") € W'.B. By transitivity we get p C A.
By assumption (1,1/,W,m) € [(ref t/)P]5. Because p C A (1,1, W, m) € [ref T/ 4.
By (LU, W', m) € [ref '] In particular this means
= (LU)EW.p.

WB ot

— Vg + V4. We do another case analysis:

A. Lliype(s,,1y(va) z(/qv,.ﬁ l{ype(sﬁ,)(vé). This is the same as lgr(v2) z(}\,,ﬁ lg+ (v3).
This must have been derived by extend-Tt because refl is syntactically not applicable

and r C A rules out high. Hence by inversion

’
o v Wi V)

which is what we needed to show.

B. Z; CAor Xy C A: We first show q C A.
By assumption X; D X, Y5 D X/ q(X) C r and q(Z’) C r. Hence byand
transitivity

w (X)) Crand
wo (X)) T

In both cases (£; E A and Xy C A) we get ¢ C A by [Lemma 8.46

Remember that by assumption firstorder(B"). Hence by it suffices to
show (ve,v5, W/ ,m) € [B"]+. Byit suffices to show (v, vy, W, ,m) €
[B"]%. We already know (vg,vs,W,m) € [A9]{. Because ¢ C A we have
(o, vh, W, m) € [A]#. We get (vo,vh, W, m) € [B]# by The goal
follows because p C A.
e ((),0,W,£,2/,m') € [unitt]£.
It suffices to show ((), (), W/, m’) € Junit!]s. Because L C A it suffices to show ((), (), W’,m’) €
[unit]s. This is clearly the case.

O

Lemma 8.50. If (e,e’, W, 2\ {0}, 2\ {0}, m) € [t]£ and & ~4 =/, then (e then unclose 0, e’ then unclose o, W, 2,5/ m) €
[1¢.

Proof. By induction on m. It suffices to show (closed o in e,closed o in e/, W,Z X/ m) € [[Tﬂﬁﬁ. We

already have L =4 X’ by assumption. Let X1, X5 such that

1, 21%,
e, D1,
o X~y ko,
W', m’ such that
e m' < m,
o« W IW,
and S, S, such that
o (51,55, m)EwW.
There are two cases:
1. (e,e’,W,2\{o},Z\{o},m) € [[ﬂ]ﬁﬁ. Clearly

e I\{o} C I \{o},
e 2\{o} C \{o}, and
e Ii\{o} =4 2\ {0}

Hence there are three cases:
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e1 €V A ea g VA
Vel,S1, 2], w,es, 2, S5 w'.

£\ o) F er, S1 55 ef, Sf A

(a) (e,e’) €< (er,e2) | Z\{o}F es, So “i> e}, Sh—

(w z\/}\,,ﬁ WVIICAVIICA)—

IWTWT IWA (S],S5,m) B (W) A

Wy g w' A (ef,e5, W 2\{0}, 2"\ {0}, m') € [1]¢
In this case it is suffices to show

eV A esdVA
ve], S|, 5/, w, e}, 5h, 84w,
Sike, S ==¢], S| A
(closed oine,closed oine’) € ¢ (e1,e2) | 7, F ey, So % e}, Sh —
(wrfl g W VIIEAVIICA) —
A
AW W IWA (S, S5, m!) B (W) A
w E‘\/}V”.ﬁ W' A (e{,eé,W”,Z,Z’,m’) € WTﬂg
It is clear that neither closed o in e nor closed cin e’ is a value. Solet w,w’, ep,ep, X1, 25,57,
such that

e closed oine, 2,51 > eg, S|, w, X}
e closed oine’,X5,52 = ep, S5, w', X5

By assumption neither e nor e’ are values. Hence the reductions must have happened with
Eclosed. Hence by inversion

L eazl\{o-}vsl >~ 607517(1),}:{
L4 e/aZQ\{O_}7SQ - 667357(")/725
e eg =closed o in eg

e e; =closed oin ¢

Also assume w %{,[V,_B w'VEIZICAV ZIC A
We get a W’ such that

e W/ IW/,

o (S],S5,m') bW,

* W=y, w’, and

e (eo,eh, W, I\ {0}, L\ {o},m’) € [T]#
It suffices to show

e W’ J W’ We already know that.

A
(S1,S5, m') > W”. We already know that.
o w Eﬁv”ﬁ w’. We already know that.

(closed o in eg,closed o in ej), W” £, £/ m/) € [T]# We get this by induction.

e1 ¢V AVey, S|, 2, w.

SOOI er, S <ZEL ef 8! — —(pol(w) T A) A

(b) (e,e') €4 (er, e2) 1\ {o} 15 91 15 21 B (pol(w) C A)
FEW" W JW' A (S],Se, m") > (W) A
(6{,eg,W”,Z\{O'},Z/\{O—},m/) S "—T—”{"})

In this case it suffices to show
e1 ¢V AVei,S1, 2, w.
Sk e, S1 =5 el S!— —(pol(w) T A) A

EW”W” IW' A (S],So,m’) & (W) A
(ef,e2, W” 2,5/ m') € [1]£)
It is clear that closed o in e is not a value. So let w,eg, L1, S1 such that

(closed o in e,closed o in e’) € < (e, e2)

e closed oin e, X1,S1 > ep, S, w, X}

By assumption e is not a value. Hence the reduction must have happened with Eclosed. By
inversion
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e e, 2\ {0},S1 > ep,S7, w, Iy
e eg =closed oin eg
Hence
e ~(pol(w) E A)
and there is an W such that
e W/ OIW
o (S, Sy,m/) B W
e (eg, e/, W" £\ {o},Z\{o},m') € [T]¢)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.
e (81,S2,m’) lf>1 W', We already know this.

e (closed o in ep,closed o in ¢/, W” £,/ m’) € [t]#. We get this using the induction
hypothesis.

e &V AVel, ST w.

£\ {0} F €5, Sz == ef, S§ — —(pol(w) T A) A
(c) (e,e’) €4 (e1,e2) P
FAW"W”" W' A (S1,S5, m') > W A
(el,eé,W”,Z\{o'LZ’\{o‘},m’) S "—T—”{:l)
In this case it suffices to show
ea €V AVe,, S5 w.

. o So b en, S2 =5 e}, S5 — —(pol(w) T A) A
(closed o in e,closed oine’) € < (e, e2)

EW” W I W' A (S1,85,m') b W” A
(1, e, W, 2,2/, m') € [T]¢)
It is clear that closed o in e’ is not a value. So let w’, ey, X5, S5 such that
e closed oine’, 29,5y >~ eé,Sé,w’,Zé

By assumption e’ is not a value. Hence the reduction must have happened with Eclose. By
inversion

o e To\{o},Sy >~ €}, S5, w’, L
e ¢ =closed o in ¢
Hence
e ~(pol(w) C A)
and there is an W/ such that
e W' W
o (S1,S5,m") s W”
e (e,ef, W' I\{o}, L'\ {o},m') € [t]#)
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.
e (S4,S4,m) EW”. We already know this.
e (closed o in e,closed o in e), W” £,/ m’) € [t]¢. We get this using the induction

hypothesis.

2. (e7 e/7W> Z\{O'},Z/\{O'}7m) S {(v,v’,W,Zl,Zg,m) ’ (V,V/,W7 m) S "—T-"‘\,;l
In particular this means that there are v,v’ such that e = v and ¢’ = v
show

. In this case it suffices to
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e1 €V N e g VA
Vel,S1, 2], w,es, 21, S5 w.

w;X]
Yikep, Si==e¢e], S| N

(closed o in v,closed o in v') € ¢ (e1,e2) | 5, F ey, So % e, Sh —
(w z(,qv,.ﬁ W VI CAVIICA)—

A
IW W’ IW'A (S],S5,m/) > (W) A
Wy g W A (ef, e, W, 2,2/ m') € [T]¢
It is clear that neither closed o in v nor closed o in v’ is a value. So let w, w’, ep, ep,21,%5,57,S5
such that

o closed 0inv,X1,S1 > ep, S, w, X}

e closed oin v/, X5,So >~ eé,Sé, w’, X}

By assumption both e and e’ are values v and V', respectively. Hence the reductions must have
happened with EclosedBeta. Consequently

e eg =V
o e ="
51 =5
e S, =S5,
e w =unclose(o) = w’
e X=X
e Y=5%,

Hence the reductions are really

e closed o inv,X1,S; = v,Sy,unclose(o), L,

e closed oin v/, X5, Ss = v/, Sy, unclose(o), Xo
Also assume unclose(o) zﬂ,,.ﬁ unclose(o)V X3 C AV Xy C A. It suffices to show

e W/ O W’ We get this by
e (S1,S,,m’) Ew. We already know this.

e unclose(o) E(,qv/.ﬁ unclose(o). We get this with refl.

o (Vv W' L 5/ m') € [t]f. We already know (v,v,W,m) € [1]5. By [Lemma 8.24] and
Lemma 8.25( we get (v,v/, W/, m/) € [t]5 which implies the subgoal.

O

Lemma 8.51. If (e,e’, W, 2\ {0}, 2\ {0}, m) € [t]¢ and & ~4 =/, then (close 0 in e, close 0 in e’,W, >, 5/ m) €
[c1#.

Proof. 1t suffices to show (closed o in e,closed o in e/, W, X, L', m) € [[ﬂ]“éﬁ. We already have ~ ~ 4 X’

by assumption. Let X1, X5 such that

X, D1,
e JXyD Z/;

o X~y ko,
W', m’ such that
e m/ < m,

e W W,

and Si, S, such that

o (S1,S2,m') bW
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It is sufficient to show
e1 ¢V N eg VA

Vey,S1, 11, w, ey, 15, S5, w'.
w;X]
Yiker, S1=—=e{, S| A
. . ’ w’;x!
(close o in e,close cine’) € < (e1,e2) | 1,k ey, Sy ——= eh, Sy —
(wAfy, g W VI EAVIICA) —

A
IW' WP IWI A (S1,S5,m) > (W) A
W=y g W A (ef,e5, W, 1,5/ m') e [T]¢
It is clear that neither close o in e nor close o in e’ is a value. So let w, w’, ep, e, X1, L3, 51, Sy such that

e close cine,X1,5; > eg,S{,w, X}
e close 0 in e, X3,52 >~ ep, Sy, w’, Iy
The reduction must have happened with Eclose. Consequently
e ¢eg=closedoine
e ep =closed oine’
e S/ =5
e 5, =5
e w =close(o) = w’
e X =2
e Y =1,
Hence the reductions are really
e close oin e, X1,S; > closed o in e, Sy, close(o0), Z;
e close 0 in v/, X5, S5 = closed o in e, S,, close(o), X,
Also assume close(o) x(}‘,,ﬁ close(o) VX C AV XLy C A. It suffices to show

e W/ O W', We get this by

e (S1,So,m’) EW’ . We already know this.
e close(0) &(}V,_B close(o). We get this with refl.

e (closedoine,closedoine’,W/,£, £’ m’) € [t]#. By assumption we have (e, e’, £\ {0}, Z'\ {0}, W, m) €
[T]¢. By |[Lemma 8.24| and [Lemma 8.25 this gives us (e, e’, £\ {0}, Z'\ {0}, W', m’) € [T]£. We get
the remaining subgoal with |[Lemma 8.50}

O

w;X/

Lemma 8.52. If (e,0,m) € (ﬂgc and (S, m')>0’, 0’ 30, M <mand L F e, S = e/, S’, then
(elve/vm/) € I_T—|EC'
Proof. Because e reduces e cannot be a value. Hence we must have (e,0, m) € [T] EE Because 6/ D 0,

w;Z’

(S, M0/, m'<mand ~ZFe S=— e’, S’ the goal follows directly from the definition of [T] 22 O

Lemma 8.53. Let i € {1,2}. If (e, W.0;,m) € []E° and (Si,Sa,m’) EW, W IW, m' < m and

-5/
w; X

Ik e, Si == e/, S', then YW".W"” JW'.(e/,W".0;,m') € [T]p".
Proof. Because (S, So, m’)jle'7 we have (S;, m’)>W’.0;. Because W/ J W also W'.0; J W.0;. Hence we

have (e, W’.0;,m’) € [T]2€ by [Lemma 8.52| Let W” J W’. Then W”.0; I W’.0;. We get (e, W".0;,m’)
by [Comma £ .
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Lemma 8.54. If

L4 (el,e{,W,ZU{O—},Z/U{U},m) c H—T—H{{lv

then

(625 eéaW7 Za Z/a m) € ”—T—”‘é7

ol(o
(elaW'elum) S |—T-|IE)(L)7

(e, W.85,m) € [1]2""7]

ol (o
(eQaW'elam) € [T]IE ( )7

(e5, W.05,m) € [1]2"(7))

pol(o) C

Z%A Z/,

T and

(when © then ey else e, when O then e else 5, W, 2, 2/ ,m) € [[T-ﬂﬁl

Proof. By induction on m. We do case analysis on the visibility of o
1. pol(o) £ A: By|Lemma 8.30|it suffices to show
o ((when o then e; else ey, W.0;,m) € [T]EOMG). By |[Lemma 8.19| it suffices to show

(e1, W.0;,m) € [r]P°HO)Pol) " By Lemma 4.10, we have pol(o) U pol(c) ~ pol(c).
By it therefore suffices to show (e;, W.0;,m) € [T]Eomy) which we have by
assumption.

(e2, W.0;,m) € [ﬂ‘éoug)umu“). By [Lemma 4.10, we have pol(c) Ll pol(c) =~ pol(o).
By it therefore suffices to show (ey, W.0;,m) € fﬂgouc] which we have by

assumption.

e ((when o then e} else e}, W.02,m) € [T]EOMG]. By [Lemma 8.19|it suffices to show

— (e],W.0,,m) € [T}EOMU)HPOL(G). By [Lemma 4.10, we have pol(o) Ll pol(c) ~ pol(o).

By it therefore suffices to show (e}, W.8,m) € [1]2°"®) which we have by

assumption.

— (e}, W.05,m) € [t]P°H)PoU) - By [Lemma 4.10, we have pol(o) U pol(o) ~ pol(o).

By it therefore suffices to show (e}, W.03,m) € [T]Eouc) which we have by

assumption.

e TIZ A. Assume T C A. Because pol(o) C T we have pol(c) C A by transitivity (Lemma 4.1f). 7.

pol(o) Z A. We have this by assumption.

o X ~, X'. We have this by assumption.

2. pol(o) C A: Tt suffices to show (when o then e; else es,when o then ef else e),, W,Z, L' m) €
H—ﬂ]ﬁﬁ. We already have ~ =4 X’ by assumption. Let £, X5 such that

0):12):,
.222217

o X1~y Lo,

W’ m’ such that

e m’' < m,
e W IW,

and Sy, Sy such that

® (317

Sg, m’) J[;{ w'.

We do case analysis on whether o € X;:
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(a) 0 € X;. Because pol(o) C A by assumption, also 0 € (£1) 4. By assumption I; ~4 Xo. Hence
also 0 € (X3) 4. Consequently also 0 € X5. There are two cases:
i. (e1,e1, W,ZU{o},Z' U{o},m) € [fﬂ]ﬁﬁ. Because 0 € L1 and 0 € L, we have
e X1 DX U{o} DX U{o}
e Y, DX, U{o} DL U{oh
Hence there are three further cases

e1 €V N exd VA
Ve{,S{,Z{,w eé,Z@Sé,w’.

w;I]

'_ 61, Sl E—1 617 Sl

A. (e, ef) € { (er,e2) | 5, + es, So :~_—> eb, S5 —
(wafy g W VI EAVI,CA) —
IWTW IWA (S],85,m!) B (W) A

WAy g WA (ef, ey, W, LU{0},Z'U{o},m') € [T]¢
In this case it is suffices to show

(when o then e; else ex, when o then e else ej) €
e dV A e g VA

Ve, S, 5, w,eb, 14, S, w'.

w;X]
ZJ "617 Sl :‘>€{, S{ /A

(61762) Zg"@Q,SQ%Qé, Sé—)

(w %J\%/’-B WVIICAVIICA) —
IWTWY IWA (S],85,m) B (W) A

w &ﬁ,,,.ﬁ W' A (ef,eb, W © 57/ m') € [t]#
It is clear that neither when o then e; else e; nor when o then e else e} is a value.
So let w, w’, ep, eé,Z{,ZQS{,Sé such that

e when o then e; else ep,Z1,S1 > epg,S{, w, X{
e when o then ej else ey, L2,S2 = ep, S5, w', I5
By assumption neither e; nor e is a value. Hence the reductions must have happened
with EWhenOpen. Hence by inversion
® €, Zla Sl >~ €g, S{a w, Zi
o e], X5, 5o >~ ¢e), S, w' I}
e eg = when o then ¢ else e;
e ¢ =when o then ej else e;
Also assume w a\:(}\,,ﬁ w'VIICAV ZSCA
We get a W such that
o« W/ IW,
A
L4 (Siv Sév m/) > WI/)
* Wy, w, and
o (eo, e, W, ZU{0},Z' U{c}, m’) € [T]¢
It suffices to show
e W/’ JW’. We already know that.

A
e (S7,S5,m’) > W”. We already know that.
e W=y, 5 w'. We already know that.

e (when o then e else ez, when o then e/, else ej, W” £ ¥/ m’) € [1]#. Note that
by transitivity (Lemma 7.2) we have W’ J W. We get this by induction if we can
show

— (eo, b, W", LU {0}, Z’ U{o},m’) € [t]¢. We already know that.
ez, es, W' 2.5 ' m') e ”—T—HA. We get this by [Lemma 8.29
eo, W".01,m') € [T]P°'°). We get this by [L

(
(

— (ef,W".02,m') € [T ]EOI . We get this by [Lemma 8.SSI
(e2, W”.01,m’) fﬂEOI . We get this by [Lemma 8.5l
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~ (eb, W".85,m") € [T]2°*). We get this by [Lemma 8.5

— pol(o) C t. We already know this.
— L=~y X', We already know this.
e1 ¢V AVel,S1, 2], w
B (erel) € 4 (er.e0) Y1 ke, S ==¢€], S = ~(pol(w) T A) A
EW”W” JW' A (S],Ss,m’) & (W) A
(e{a ea, WH? Z U {0.}’2/ U {G} ) m/) S WT]‘S)
In this case it suffices to show
(when o then e; else es,when o then e} else e}) €
e1 ¢V AVey,Si, 2], w

Sk er, Sp =l el 81— —(pol(w) T A) A

EW”W” JW' A (S],So,m’) & (W) A
(ef,e2, W 2,5/ m’) € [t]£)
It is clear that when o then e; else e, is not a value. So let w,eg, Z{,S{ such that
o when o then ey else es,X1,S; > ep,S{, w, X{
By assumption e; is not a value. Hence the reduction must have happened with EWhenOpen.
By inversion
e e,%,S1 = ey, ST, w, X
e eg = when o then eg else e
Hence
e ~(pol(w) C A)
and there is an W' such that
o« W/'OW
o (S!S, m/) b W"”
e (eg,e], W' ZU{o}, 2 U{o},m') € [T]#)
It suffices to show the following:
e —(pol{w) C A). We already know this
e W’ JW’. We already know this.
e (81,52, m’) Ew”. We already know this.
e (when o then e else ez, when o then ej else ej, W” £ ¥/ m’) € [1]#. Note that

by transitivity (Lemma 7.2)) we have W’ J W. We get this by induction if we can
show

— (eg, e}, W" L U{o}, Z’ u{o},m’) € [t]#. We already know that.
— (e, e5, W £, 5/ m/) € [t]#. We get this by [Lemma 8.29
— (e, W”.01,m/) € [T]} . We get this by [Lemma 8.531
— (e, W".05,m') € fﬂEouU). We get this by [Lemma 8.5
— (e2, W”.01,m’) € [T]} . We get this by [Lemma 8.5

— (e}, W".05,m') € [ﬂgouc). We get this by [Lemma 8.5
— pol(o) C t. We already know this.
- il =

(e1,e2)

~ 4 L'. We already know this.
ex &V /\VeQ,SQ,ZC,
C. (er.el) € 4 (er, ) 7ok eq, So : e}, Sy — (pjl(u)) CA A

(AW W 3 W' A (S1,Sh,m’) s W A
(e1,e5, W LU {c}, 2" U{c},m’) € [T]¢)

In this case it suffices to show

(when o then e; else es,when o then e} else e}) €

ea &V AVel, S, 2

( ) Yok eq, Sy % e}, S, — —(pol(w) T A) A
€1, €2
EW”.W” IW' A (S1,85,m’) & W A
(ela eé7WH7 Za Z/a m/) € ”;[:”‘é)
It is clear that when o then e] else e} is not a value. So let w, eg, L}, S5 such that
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o when o then ef else e}, X9,S2 > ep, S5, w, X
By assumption e} is not a value. Hence the reduction must have happened with EWhenOpen.
By inversion

e e1,%5,S0 > eg,S), w, X

e eg =when o then e else e

Hence

e —(pol(w) C A)

and there is an W' such that

o« W/ W

o (S!S, m/) b W"

o (e1,e0, W, ZU{0o}, L U{o},m') € [T]#)

It suffices to show the following:

e —(pol(w) C A). We already know this

e W/ JW’. We already know this.

e (S1,S2,m) EW”. We already know this.
e (when o then e else ez, when o then eg else ej, W”, L. 5/ m’) € [t]¢. Note that

by transitivity (Lemma 7.2) we have W’ J W. We get this by induction if we can
show

— (e1,e0, W, ZU{0},Z' U{o},m’) € [T]£. We already know that.
— (e2,e5, W 2,5/ m’) € [1]£. We get this by [Lemma 8.29
— (e, W".8;,m") € [T]2°"°). We get this by [Lemma 8.5

— (eg, W".05,m') € fﬂgouu). We get this by [Lemma 8.531.
— (e, W"”.01,m') € fT]EOuU). We get this by [Lemma 8.5
— (el,W".85,m') € fﬂEouU). We get this by [Lemma 8.5
— pol(o) C t. We already know this.

— XL =~y X'. We already know this.

ii. (e1,ef,W,ZU{0o},2' U{o},m) € {(v,v',W,%1,55,m)|(v,v/,W,m) € [t]5} In this case
there are values v1,v] such that e; =v; and e{ =v] and (v1,v{, W, m) € [t]%. It is suffices
to show
when o then v; else ex, when o then v/ else e)) €

1 2

1 dV A e d VA
Vel,S{,1{,w,e5, 25,85, w’.

v; 2]
ke, S —=—=¢|,S|A

(e1,e2) | I,k eq, So Ly eb, Sh—

(w %(/qv/.ﬁ WVIICAVIICA) —
IWTWT IWIA (S],S5,m!) B (W) A

w &(}v,,ﬁ W' A (e],eb, W 2 5/ m') e [T]#
It is clear that neither when o then vy else e nor when o then v{ else e} is a value. So
let w,w’,ep,ep, 21, L5,51,S; such that

e when o then v; else es, 21,51 > e, S{, w, X{

e when o then v] else e5, X2,52 >~ e, Sy, w’, 5
Because v; and vy are values, the reductions must have happened with EWhenOpenBeta.
Hence

° 66 =V,
® ey =V,
e S1 =54,
e S/ =S,
e w=¢=w,
e Y1 =1X; and
o I} =1,

So the reductions are really
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e when o then vy else 62,21,51 - Vl,Sl, G,Zl

e when o then v] else e}, X5,S2 = Vi, S2, €, X2
Let € zﬁ/,_ﬁ eVIi JAV Xy, JA. It suffices to show
e W/ O W’. We have this by
e (S1,S,,m) Ew. We already know this.
°c &(}V,ﬁ €. We have this by refl.

o (vi,vi,W,Z 2/ m’') € [1]£. It suffices to show (vi,v], W, m') € [t]{. We get this by
1 E 1 v

[Cemma 8.25 and [Lemma 8.24]

(b) o ¢ Zl-

We show 0 ¢ Xy. Assume o € L. Then because pol(o) C A by assumption, also 0 € (X2) 4. By

assumption X ~4 L. Hence also 0 € (L) ,. But then 0 € Z;. 4.

There are two cases:

i. (es,es, W,Z, 2 m) € [[Tﬂ“éﬁ. There are three further cases

A. (627 eé) €

(e1,e2)

e1 &V A es g VA
/ !/ / / / / !/
velaslazhwve27X27527u) .

Z\ I—el, 51 %eiv Si /\

ok en, Sy === ¢}, S5

(w %a//.ﬁ WVIICAVIICA) —

IW W IW'A (S],S4,m) é (W) A

w E‘\eV//.ﬁ w' A (e{aeéawl/a}:7z/7m/) € H—T—”‘é

In this case it is suffices to show
(when o then e; else ex,when o then e} else e}) €

It is clear that neither when o then e; else e; nor when o then e else e} is a value.

(e1,e2)

e1 ¢V N e g VA

5Ql s/ / ;! /
Ve, S1, 21, w, ey, 25, Sy, w'.

w;X] , ’
YiFe, S1=—=¢e,SIN

2ok eq, Sgw—#>eé, Sé—>

(w x(}\,,ﬁ WVIICAVIICA) —
IWTWT IWA (S],S5,m) B (W) A
Wy g WA (ef,e5, W, 2,5/ m') € [t]¢

So let w,w’, ep, e, L], L3, S51, S5 such that
e when o then e; else es,X1,S1 > ep,S], w, X{

e when o then e] else e5, L2, Sy = e, 55, w', I

By assumption neither ey nor e} is a value. Hence the reductions must have happened

with EWhenClosed. Hence by inversion
€2, Zla Sl = €p, S]/J w, Z{

e}, Xo,S9 = e}, S, w’ I}

eg =when o then e; else ¢

e, = when o then ej else e;

Also assume w z(,\l,,_ﬁ Ww'VIICA V ECA.
We get a W such that

o« W/ W/,

o (8],85,m)EW”,

* w={y, s w, and

e (e, e, W”,L,2',m') € [1]¢

It suffices to show

e W” W’ We already know that.

A
o (51,85, m")>W”. We already know that.
e W=y, s w'. We already know that.
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e (when o then e else eg, when o then e} else e), W”, L, 2/ m’) € [t]¢. Note that
by transitivity (Lemma 7.2)) we have W” J W. We get this by induction if we can
show

— (e1, e}, W", 2 U{0},Z' U{o},m’) € [T]£. We get this by
— (eo,ef, W", L, 2/, m’) € [1]£. We already know that.

(e0, W".01,m’) € [T]} (@) We get this by [Lemma 8.53
(e, W".02,m’) € [T]EOI(U). We get this by [Lemma 8.53
(e1, W”.01,m’) € [T]} (©) We get this by [Lemma 8.5l
(e, W".05,m') € fﬂzoug). We get this byw

ol

ol

pol(o) C t. We already know this.
~ ~, L. We already know this.
e1 ¢V AVei, S, 2, w.

w;X]

Y ke, St =—=e, S] = ~(pol(w) T A) A

B. (e2,e5) € { (e1,e2) M
FEW”W” JW’' A (S1,S2,m') > (W) A
(e{a €2, WNa Z? 2/7 m,) € WTH‘I{:{)
In this case it suffices to show
(when o then e; else es,when o then e} else e}) €
e1 ¢V AVei,S], 2], w.

(er.ea) Yiker, Sy % er, S — —(pol(w) T A) A
v EWW” TW' A (S],So,m’) & (W) A
(ef,e2, W 2,5/ m’) € [t]£)
It is clear that when o then e; else ey is not a value. So let w, eg, Z{,S{ such that
e when o then ey else es,X1,S; > ep,S7, w, X]
By assumption es is not a value. Hence the reduction must have happened with EWhen-
Closed. By inversion

e e,%,S; = e, ST, w, X

e eg = when o then e else e
Hence

e ~(pol(w) C A)

and there is an W’ such that

o« W/ W

o (S],So,m') B W”

e (eg, e, W' 2.5/ m/) € [T]¢)

It suffices to show the following:

e —(pol(w) C A). We already know this
e W JW’. We already know this.

e (S1,S2,m’) SW”. We already know this.

e (when o then e; else eg, when o then e} else e, W”, .2/ m’) € [t]¢. Note that
by transitivity (Lemma 7.2) we have W’ J W. We get this by induction if we can
show

— (e1,ef,W",2U{0}, L' U{o}, m’) € [t]¢. We get this by [Lemma 8.29]
— (eo,e5, W, 2,2/ m’) € [1]¢. We already know that.
— (eg, W"”.01,m') € [T]Eoug). We get this by [Lemma 8.531
— (ef, W".02,m’) € [T]EOL(U). We get this by [Lemma 8.5
— (e, W".01,m') € fﬂgouu). We get this by [Lemma 8.5
(e, W".05,m') € fﬂEouU). We get this by [Lemma 8.5
pol(o) C t. We already know this.

Y =~y X'. We already know this.
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ex &V AVel, S5 T w
O (ene e der ey | e S L el S5 s —(pol(w) T A) A
. 2,€9 1,€2

BW W I W' A (S1,85,m') 5 W" A
(617657W”7Z7Z,7ml) € H—T—”‘EA)

In this case it suffices to show

(when o then e; else ex,when o then e} else e}) €

er &V AVeé,Sé,Z’),

w;X}

Yok ey, S == el, 52 —(pol(w) T A) A
(e1,e2) ’

(FW’"W" JW' A (S1,S5,m") > W A
(e1, ey, W 2.5/ m’) € [t]#)

It is clear that when o then e] else e is not a value. So let w, eg, L5, S5 such that

e when o then e] else e), X5, S, > ep, Sy, w, X5

By assumption e/ is not a value. Hence the reduction must have happened with EWhen-

Closed. By inversion

° eé, 2o, Sy = €o, Sé, w, Zé

e ez =when o then e] else eg

Hence

e ~(pol(w) EA)

and there is an W such that

e W/'OW

o (S, Sy, m/) & W

° (62, €o, W”, Z, Z,, m’) S WTﬂ‘é)

It suffices to show the following:

e —(pol{w) C A). We already know this

e W’ J W’ We already know this.

A
e (S1,S2,m’) > W”". We already know this.
e (when o then e else ez, when o then e} else eo, W”, L, 2/, m’) € [T]¢. Note that
by transitivity (Lemma 7.2)) we have W” J W. We get this by induction if we can
show

— (e1,e],W"” ZU{o}, Z’ U{o},m’) € [t]#. We get this by [Lemma 8.29

(eq,eq, W L, 2/, m/) € [['fﬂ“é. We already know that.
(e2, W”.01,m') € [T]E . We get this by [Lemma 8.5

— (eg, W".85,m’) € [1]2°"”). We get this by [Lemma 8.531.
( 1E3 (o)
(

(o)

e, W".0;,m’) € [1] o) we get this by [Lemma 8.5
e;, W".05,m’) € fﬂgouu). We get this by [Lemma 8.5
pol(o) C 1. We already know this.
—Xrg 2. We already know this.

ii. (62,62,W 2,2 m) e {(v v W, Zl,Zg, m) | (v,v/; W, m) Tﬂ{}} In this case there are val-
ues va, v4 such that €2 =Vy and e, =vj and (vQ,vz,W m) € [t]f. It is suffices to show
(when o then e; else vy, when o then e} else v}) €

e dV A esg VA

Vel,S{, 2, w,eh, 2}, Sh, @’

w;X]
21 }—61, S1 :‘e{, S{ A

v’ Xh
(61762) 2ok es, So (:> eé, Sé —
(wrf, g W VI EAVIICA) —

A

IWI W IW A (SL,Shm!) B (W) A
Wy, g WA (ef, ey, W, 1,1/, m') e [t]¢
It is clear that neither when o then e; else v nor when o then ej else v} is a value. So
let w,wﬂ%,eé,[{,[é, 1,S4 such that

e when o then e; else v3,21,S1 > ep,S{, w, I{
e when o then e] else v}, X5, Sy >~ eé,Sé,w’,Zé
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Because vy and v} are values, the reductions must have happened with EWhenClosedBeta.

Hence

® €3 = Vg,

® ep =Vy,

e S1 =54,

° 5;=5,,

e w=¢=w,
e Y1 =1 and
o X =12,

So the reductions are really
e when o then e; else vo,%1,S1 > v9,51,€, L,
e when o then e] else v}, Xo,So = v}, So, €, X9

Let € m(}\,,ﬁ eV JAV Ly, JA. It suffices to show
e W/ JW’'. We have this by

e (S1,S,,m") EW. We already know this.

¢ E(,qv/.ﬁ €. We have this by refl.

o (vo,vi, W, L,/ m’) € [t]#. It suffices to show (v2,v5, W, m') € [T]5. We get this by
(Lemma 8.25] and ILemma, 8.24!

O

Theorem 8.2 (Binary Fundamental Lemma).
IfT;5:0 bpc e : T and (y,W,m) € [T]{ and W.6; J 6 C W.0, and V1 € dom(0).(l,1) € W.B, then
V‘Aam'(yl(e)aYQ(e)vWaszam) € WTﬂél

Proof. Let A be an attacker. By induction on I'; ;0 Fpc e : T.

® var:

7 7 var
Mox:t, T80 bpex:T

We have to show (y1(x),v2(x),W,Z,£,m) € [t]¢. By assumption (y,W,m) € [T',x : T,T"]vy.

Therefore since x € dom(I",x : T,T"”) we have (y1(x),vz2(x), W, m) € [t]4. The goal follows directly
from the construction of [t]+#.

e nat:
neN
M550 Fpe s N*-

nat

We have to show (yi(n),y2(n),W,Z, <. m) € [N+]£. This is equivalent to showing (n,n, W, m) €
[NL]4. Because L C A by [Lemma 4.19] it suffices to show (n,n,W,m) € [N]5. This follows
directly from the definition of [NT;.

e open
MZuU{ohObpce:T pc C pol(o)

20 Fpc open(o) ine:t

open

We have to show (y1(open(o) in e),y2(open(o) in e),W,Z, 5 m) € [t]£ which is equivalent to
showing (open(c) in y1(e),open(o) inya(e),W,Z, L, m) € [t]#. By induction (y1(e),vz2(e), W, LU
{o},Zu{o},m) € [T]¢.

We get (open(o) in yi(e), open(o) in ya(e), W, L, L, m) € [T]¢ byif we can also show
Y ~ 4 X. This is clearly the case.

e opened:
MZuU{ohOkpce:T pc C pol(o)

I2;0 Fpc opened(o) ine: T

opened

We have to show (y;(opened(o) in e),y2(opened(o) in e),W,L,Z,m) € [t]¢ which is equiv-
alent to showing (opened(o) in 7y;(e),opened(o) in yz(e),W,Z,Z,m) € [t]¢. By induction
(v1(e),vale),W,ZU{o},ZU{o},m) € [t]#. We also clearly have £ a4 L.

Hence by (opened(o) in yi(e), opened(o) in y2(e), W, L, £,m) € [T]¢.
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Mox:t; 250, e 1o

[ 510 bpe Axe’ : (11 T8¢ 1)+

A

In this case T = (11 Elpe To)+. Tt suffices to show (y1(Ax.e’),y2(Ax.e’), W, m) € [(t; ELpe To) 4
It is clear that L C A by Because of this and because of the way substitutions work on
functions it suffices to show (Ax.y;(e’), Ax.y2(e’), W, m) € [1; ELpe To |4 By the|Unary Fundamental|
Lemmal and the definition of substitution (Ax.y1(e’),0,m) € [T]E¢ and (Ax.y2(e’),0,m) € [T]E". So
let

—waw,

- m' <m,

- L2 CcLy,

— (v,v, W' m’) € [t]y.

We need to prove ([v/xlyi(e’), v/ /xlya(e’), W', Zo, Z1,m’) € [T2]¢.

Remember that we assume that the variables replaced by y are distinct from x and that x is distinct

from the free variables in the expressions of the codomain of y. Hence by v/xlyi(e’) =
Y1 U{(x,v)}(e') and [v'/x]yz(e") = y2 U{(x,v")}(e’). So it suffices to show (y1 U{(x,Vv)}(e’),y1 U
{(x,v)}(e"), W', 2o, L1, m") € [ta]¢.

We show

= ((yu{e, v} y2 U{(x, v, Wim') € [T, x 1t ]v.
By [Lemma 8.26{ we get (v, W’,m’) € [T]#. The claim follows by

- W’'.0; 36 C W'.0,. We already know W/ C W and hence W'.0; O W.6; and W’.6, 30 W.0,.
The claim follows by transitivity

Hence we get ('YlU{(X,V)} (e/)ﬂ/lU{(Xa V/)} (e/)a le Z/a Zla m/) S WT2ﬂ€l by induction. (YlU{(X,V)} (e/)a le
{(x,v)}(e"),W' 59,1, m’) € [1a]¢ follows by [Lemma 8.29
prod:

F,Z,SFPC €1 :T1 F,Z,erC €2 To
)J_

prod

20 Fpe (e1,e2) 1 (T1 X T2
In this case T = (11 x T2)*. We have to show (y1((e1,e2)),v2((e1,e2)), W, L, L, m) € (71 x T2)1]¢
which is equivalent to showing ((y1(e1),vi(e2)), (va(e1),vz2(e2)),W, L, 2, m) € [(t1 x T2)1]&. By
induction (y1(e1),vza(e1), W, L, Z,m) € [t1]# and (y1(e2),vales), W, L, L, m) € [t2]#. We get the
claim by [Comma 5.3

app: ,
M550 bpe er s (1 T8¢ )P
T55;0 Fpcea:my PC T pclUp C pe T <1 roy’

app
F;Z;G l—pc €1 €2 : Ty

In this case T = T2. We have to show (y1(e1 e2),vz2(e1 e2), W, L, £, m) € [12]¢ which is equivalent to
ShOWing (Yl (el) Y1(62)7Y2(€1) '}/2(62), Wa Za Za m) S WT2ﬂ€' BylindUCtion Wl (61)7Y2(€1)7 W7 Z7 Za m) S

”—(Tl Zlge T2)p-ﬂ‘é and (Yl (62)’Y2(62), W7 Za 27 m) € H—T{-ﬂ‘é By Lemma 8.31|we have ('}/1(62)7'\/2(62)7 W7 Z7 Za m) €
[t1]¢. We already have p C T2 and get p C p. by [Lemma 4.13] We also clearly have £ ~4 L. Hence
we get the goal by

fst:

M50 Fpce: (1 X 12)P PCT

fst
r, Z, 0 ch fst(e) T

In this case T = ;. We have to show (yi(fst(e)),y2(fst(e)), W, Z, L, m) € [11]# which is equivalent
to showing (fst(yi(e)), fst(y2(e)), W, L, L,m) € [t1]#. By induction (yi(e),v2(e),W,L,L,m) €
[(T1 % T2)P]E. We also clearly have £ ~4 £. We get the claim by [Lemma 8.38

140



e snd:

M50 Fpce: (1 X 12)P PC T
250 Fpc snd(e) : T2

snd

In this case T = T2. We have to show (y1(snd(e)),ya(snd(e)),W,Z, £, m) € [t2]# which is equivalent
to ShOWing (Snd(Yl (e))v Snd(yz(e))a W7 Za Za m) € WT2“€' By induction (yl(e)aYQ(e)a Wa Za 27 m) €
[(t1 % T2)P]#. We also clearly have £ ~4 £. We get the claim by [Lemma 8.39
e inl:
F,Z,e }_pc e:. T
I 250 Fpe inl(e) : (11 + T2) "

inl

In this case T = (11 + T2)*. We have to show (y1(inl e),vz2(inl e), W,Z, £, m) € [(t1 + T2)1]¢
which is equivalent to showing (inl yi(e),inl ya(e),W,L, L, m) € [(t1 + T2)1]¢. By induction
(vi(e),va2(e),W, L, 2, m) € [t:]£. We get the claim by [Lemma 8.40
e inr:
F,Z,e }_pc € :To
250 Fpcinr(e) : (11 + o)t

inr

In this case T = (T; + T2)=. We have to show (yi(inr e),ya(inr e),W,L,Z.m) € (11 + 12)*]¢
which is equivalent to showing (inr yi(e),inr ya(e),W,Z,Z,m) € [(t1 + T2)*]#. By induction
(vi(e),v2(e),W,Z, 2, m) € [t2]#. We get the claim by [Lemma 8.41

® case:

F,Z,Gl—pc e:(Tl +T2)p
pCT Fox 15550 Fpeup €1:T Fy:1; 50 bpeup €21 T T < T Ty <: T

case
250 Fpc case(e, x.e,y.ez) : T

We have to show (y1(case(e,x.e1,y.e2)),v2(case(e,x.e1,y.€2)), W, L, L, m) € [t]¢. By our assump-
tions about variables x ¢ dom(y) and y ¢ dom(y). Hence this is equivalent to showing

(case(yi(e),x.vi(e1),y.vi(e2)), case(ya(e), x.y2(e1),y-y2(e2)), W, L, L, m) € "—ﬂ]ﬁ- BY
it suffices to show:
— (vi(e),y2(e),W,Z,£,m) € [(t1 +T2)P]¢. We get this by induction.
— p E 1. We already know that.
— X ~,4 X. This is clearly the case.
- YW m' W JWAmM' <m — W,v'(v,v, W' m’) € [t1]4 — (v/xlyi(er), V' /xlya(er), W, L, L, m’) €

[l
Let W/ JW, m’ <m and v,v’ such that

* (V,V’,W’,m/) € H—Tl—”‘\/}'
By it suffices to show ({x,v} U vi(er), {(x,v)} Uyz(e1), W, Z,L,m) € [t]¢ By
[Cemma 8.31] also

* (V,V’,W’,m/) € H—T{—”‘\/}
By [Lemma 5.20]also

* (Y7W/7ml) € "’I""”.é
Therefore by [Lemma 8.2 (({x,v} Uy1,{(x,v/)} Uvy2), W', m') € [T,x : t|]# and by [Lemma 6.2
W.0, 36 CW'.0,.
({x, viIuyi(er),{(x,v)}Uvya(er), W, L, 2, m') € [T]¢ follows by induction.

- VW/, m/-W/ g W/\ml < m — VW7W/(W7W17W/7 ml) S WU“{;-([W/U]VNQ), [W//UW2(62)7W/7 Za Za m/) S

[T]¢. Let W/ I W, m’ < m and w,w’ such that

* (W7WI7W/7mI) € ”—12-”{71'
By it suffices to show ({x,w} U vi(e2),{(x,w')} Uyz(e2), W L, L,m) € [t]¢ By
[Cemma 8.31] also

* (valvw/aml) € |.|—’Té-|.|‘\/7l
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By [Commma 820 also
* (Yanvml) € "—I—‘—”‘\/?l

Therefore by (5, W) Uye, {x, w)}Uya), Wm') € wr x : T5]4 and by [Lemma 6.2]
w’' X

W.0;, J0C W.0, ({x,wlUvyi(es),{(x,w )}Uyg(eg), 2,2,m/) € [t]{ follows by 1nduct10n

— YW/ m W IWAmM <m — W.(v, W.0;,m') € [11]v — ([v/xlyi(e1), W01, m’) € [t]RP.
Let W’ Jw, m' <m and v such that

x (v, W.0,m') €[ty

Byit suffices to show (y; U{(x,v)}(e1), W.’0;,m’) € [T]RP. Byalso
x (v, W.0;,m’) € [t]]4.

. By |Lemma 8.32 and [Lemma 8.23|
* (v, W.0;,m') € [Ty

Therefore by (v1 U{(x,v)},W’.0;,m) € [T,x:7}]v and by [Lemma 6.2l W’.0; J 0.
We get (v1 U{(x,v)}(e1), W .01,m’) € [T]E°P by the [Unary Fundamental Lemmal

— YW/, m W IJWAmM' <m — W.(v, W.0;,m') € [11]y = ([v/x]ya(e1), W.0s,m') € [T]RP.
Let W IW, m'<m and v such that

x (v, W.0y,m') € [11]v
Byit suffices to show (y2 U{(x,V)}(e1), W.02,m’) € [T]E-P. Byalso
* (v, W.02,m') € [t]]4.
. By [Lemma 8.32| and [Lemma 8.23|
5 (Y2, W02, m) € [Tv.

Therefore bym Y2 U{(x v)} W’.0;,m’) € [T,x:7,]y and by [Lemma 6.2l W’.0, J 0.
We get (y2 U{(x,v)}(e1), W.02,m’) € [T]E°“P by the [Unary Fundamental Lernma]r

- YW . m''W JIWAmM <m — W. (v W01, m') € [Ta]v — (W/ylyi(es), W' .01, m’) € [T]PP.
Let W’ Jw, m' ' <m and v such that

x (v, W.0;,m') € [ta]v

Byit suffices to show (y; U{(x,v)}(e2), W’ .01, m’) € [T]RP. Byalso
* (v, W.0;,m’) € [t5]4.

. By |Lemma 8.32 and [Lemma 8.23|
x (v, W.01,m') e [Ty

Therefore by (y1 U{(x,v)},W".0,,m’) € [T,x: t4]v and by [Lemma 6.2l W’.0; J 0.
We get (v1 U{(x,v)}(e2), W’ .01,m’) € [T]E°P by the [Unary Fundamental Lemmal

— YW/, m W IJWAmM' <m — W.(v, W.0,,m') € [12]v — (v/ylya(ez), W.0s,m') € [T]EP.
Let W IW, m'<m and v such that

x (v, W .05, m') € [1o]v
Byit suffices to show (y2 U{(x,V)}(es), W.02,m’) € [T]E-P. Byalso
x (v, W .02,m’) € [t4]4.
. By |Lemma 8.32| and [Lemma 8.23|
* (y2, W.02,m') € [T]y.

Therefore bym Y2 U{(x,v)},W'.02,m’) € [T,x:15]v and by [Cemma 6.2 W.0, 2 0.
We get (v2 U{(x,V)}(e2), W'.02,m’) € [T]R°P by the [Unary Fundamental Lemmal

® new:
M550 kpce:t pcC T (D) <t

250 Fpc new (e, T) : (ref )t

We have to show (y1(new(e,T)),ya(new(e,t)),W,Z,Z,m) € [(ref(t))-]# which is equivalent to
showing (new (y1(e), T),new (ya(e), ), W, L, £, m) € [(ref(t))1]#. By induction (yi(e),v2(e), W,Z,L,m) €

[t'1£. We get the claim by if we can show X a4 Z. This is clearly the case.
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loc:
o) =1’

M550 bpe L (ref T/)*

loc

v1(1) =1 =ys(1). Since 1 is a value it suffices to show (1,1, W, m) € [(ref t/)-]. Because L C A
by [Lemma 4.19} it suffices to show (1,1, W, m) € [ref T/]{. To show this we have to show

- W.0;(1) = v/ = W.05(1). By assumption W.0; 0 6 C W.05. And by assumption of the rule
0(1) =1’. Hence W.0,(1) =1’ = W.05(1).
— (L) € W.B. Clearly 1 € dom(0) and therefore by assumption (1,1) € W.3.

sub:
I 250 bpe ext/ pc C pc’ <t

5 0kpce:T

sub

By induction we have (y1(e),vz2(e), W,Z,L,m) € [t']#. We get the goal by |[Lemma 8.31
deref:

/

5250 bpc e’ @ (ref T/)P pCT T <t

7 deref
F,Z,e ch le':tT

We have to show (v1(!e),v2(le), W, Z, £, m) € [t]# which is equivalent to showing (!(v1(e)),!(ya(e)), W, L, L, m) €
[T]¢. By induction (y1(e),vz2(e), W,L,£,m) € [(ref t/)P]¢. By|Lemma 4.13|p C t. We also clearly
have £ ~4 L. We get the claim by

assign:

52550 bpc e (ref T/)P (X)) <1/ M2 0kpce T pcUp C 1/
5250 bpec e:=e’ :unit"

assign

! ) W,Z, 2. m) € [unitt]¢ which is equivalent to showing
) m € ”—unltL-HA By induction (Yl( )7Y2(e)7wa Z7 Zam) €
,Z,m) € [t]f. We get the claim by |L if we can

We have to show (yi(e := e’),ya(e:
(vi(e) == 1vi(e’),v2(e) == va(e’), W,
[(ref T)P]¢ and (yi(e’),va(e), W,
show

MMII

— X ~4 X. This is clearly the case.
— 1(XZ) <: t/. This is a premiss of the rule.

— p C t/. We get this by |[Lemma 4.13

unit:

— unit

250 Fpe () zunit
We have to show (y1(()),v2(()),W,Z, £, m) € [unitt]{£. This is equivalent to showing ((), (), W, m) €
[unitt 7. Because L C A by|Lemma 4.19} it suffices to show ((), (), W, m) € Junit]:. This follows
directly from the definition of [unit]s;.

close:
Mo\{o}0Fpce:t pc C pol(o)

I'2;0 kpccloseoine: T

close

We have to show (y1(close oine),yz(close oine), W, L, £ m) € [t]#. Thisis equivalent to showing
(close oinvy;(e), close oinys(e), W, L, £, m) € [t]£. By induction (y1(e),va(e), W, L\ {co},Z\ {0}, m) €
[T]¢. We also clearly have £ ~4 £.

Hence by [Lemma 8.51| (close o in yi(e),close o in ya(e), W, L, L, m) € [T]£.

closed:
I 2\{o}0kpce:T pc C pol(o)

closed
I'; 250 Fpc e then unclose 0 : T

We have to show (y1(closed(o) in e),y2(closed(o) in e), W, L, £, m) € [t]# which is equivalent to
showing (closed(o) inyi(e), closed(o) inyz(e), W, L, £, m) € [t]¢. By induction (y1(e),v2(e), W, Z\{c}, L\ {c},n
[T]¢. We also clearly have £ ~4 L.

Hence by [Lemma 8.50| (closed(o) in y1(e), closed(o) in ya(e), W, L, L, m) € [T]£.
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e when:
r; Zu {6}7 0 }_pCUpol(G) [ rv Zy 0 chupol((y] €T p()l(d) Lt

I'; 250 bpc when 0 then e else €3 : T

when

We have to show (y1(when (o) then e; else e3),ya(when (o) then e; else e2), W, %, £ m) € [t]#
which is equivalent to showing

(when (o) then yi(e1) else yi(es),when (o) then va(e1) else ya(e2), W,Z,£,m) € [t]#. By
[Cemma 8.54] it suffices to show

— (vi(e1),y2(e1),W,ZU{o},Z U{o},m) € [t]#. We get this by induction.
— (v1(e2),y2(e2),W,Z, 2, m) € [t]#. We get this by induction.
—(

viler),W.0;,m) € [t]P°7), By Lemma 4.6 pol( ) C pc LU pol(c). Hence by |Lemma 8. 5| it
suffices to show (yl (e1),W.01,m) € [ﬂpcuwl . We get this by |Unary Fundamental Lemmal if

(y1,W.0;,m v. By m Lemma 8.32] this is the case.
(

- yg(el),W.G%m) [ﬂEOl ) By [Lemma 4.6 pol( ) C pc Upol(o). Hence by |Lemma 8. 5| it
suffices to show (yg(el) W.05,m) € fﬂpcuml . We get this by |Unary Fundamental Lemmal if

(Y2,W.0,m v. By m Lemma 8.32| this is the case.
— (yi(e2), W. 61, ) fﬂpOL o), By pol( ) € pc Upol(o). Hence by |Lemrna 8. 5| it

suffices to show (yl(eg) W.0,,m) e fﬂpcumﬂ °) We get this by |Unary Fundamental Lemmal if
(y1,W.8;,m v. By [Lemma 8.32] this is the case.
— (valea), W. 92, [ﬂpd °) By pol( o) C pc Upol(c). Hence by |Lemma 8. 5| it
suffices to show (yg(eg) W.0,,m) € [ﬂpcuwl . We get this by |Unary Fundamental Lemmal if

(Y2, W.02,m) € [Ty Bym this is the case.
— pol(o) E 7. This is an assumption of the rule.

— X ~ 4 X. This is clearly the case.

9 Higher order observations:

Note that, in the paper, for reasons of explainability, we used a slightly dif-
ferent formulation of the logical relation, that is logically equivalent to the
one used in our proofs (modulo the additional features we have to deal with
here). In particular the condition that we either have a relevant declassifica-
tion or we continue to enforce relatedness is formulated as the implication if
there is no relevant declassification, then we continue to enforce relatedness
here. The part of this condition not related to the active lock set is captured

by the relation %J(qw.m) defined below.

If we want to have higher order observations we need some notion of equivalence of functions. The
obvious notions is to take the logical relation again. Because all other notions of equivalence on values
used in the equivalence of observations coincide with the logical relations as well, we can just replace the
equivalence with being in the logical relation. Note that this means that equivalence of observations is now
step-indexed.

V1T, v. # Lo (v) —(pol(w) C A)V —(pol(w) CA) (v,v, W, m) €[]
v refl v - high v — extend-T
W ARy W W A (W m) W <(v) ~w.m) 1.(v)
and
pol(w) Z A pol(w') LA . V1T, v.w # Le(v)
7 - high 7 refl
w Z(W,TTL) w w :(W,TTL) w

(vv ,W,m) e []5 (L) eWp

extend-t
Le(v) &y my Le(V)




The unary relations and the binary value relation stay exactly the same. In the binary expression relation
we have to use the step-indexed notion of equivalence of observations now.

[T1¢ = [[ﬂ]flﬁ U{v,v/,W,2.,2,,m)| (v,v/,W,m) € ][5} where:

ZR‘JA Z//\VZ\,Z-_).ZQZ| /\ZIQZJ/\Z| ~ A Zg—)

A
YW/ m/,; S, Som/ <mAW IWA(S1,So, m') > W' — (er,es3) €
e1 €V N eag VA
Vel,S1, 2], w,es, 20, S5 w'.

Tikep, Sy —el, S| A

Cpar = (61,62) Zz F €2, 52 % eév Sé — U
(Wi my W VIIEAVI,CA) —

IWTWT IWIA (S],85,m) B (W) A
[[ﬂ]ﬁﬁ =< (e1,es, W, 2,2/, m) w &{LW/,J“,) W' A (ef,eb, W 2 5/ m') e [t]#

e1 ¢V AVei,S1,2, w.

Sk er, St el ST s —(pol(w) T A) A
CL =4 (e,e2) n U
AW W TW'A (S],So,m/) & (W) A
(e{7e2vw//7za2/7ml) S ”—T-H{Z_I)

e &V AVel, S5 2L w.

. To b ea, S s eh 4 — —(pol(w) T A) A
R

(e1,e2)

(EBW”.W"” I W' A (S1, 84, m/) & W” A
(el,eé,W'/,Z,Z’,m’) S WTﬂél)

The only compatibility lemmas that change significantly are those dealing with references:

Lemma 9.1. If (e,e’,W, 2,2/, m) € [t/]#, L =4 Z/ and 7/(2) <: Tand T/(2') <: T, then (new (e, T) ,new (e, 7) , W, %, 5/ 1
"—(ref (T))lﬂé

Proof. By induction on m. It suffices to show (new(e,t),new(e’,t),W,L,2',m) € [[(Tef(T))Lﬂéﬁ. We
already have L =4 X’ by assumption. Let X1, X5 such that

e X, DI,

e X1, D1,

o Xy Lo,
W’ m’ such that

e m <m,

e W IW,
and Sy, Sy such that

o (S1,52,m) B W
There are two cases:

1. (e,e/,W, 2,2 m) € [1] “Eqﬁ. In this case there are three further cases:
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e1 €V A ea g VA
Vel,S1, 2], w,es, 2, S5 w'.

w;X] ' '
riFe, Si=—=¢e}, SIN

(e,e’) €< (er,e2) | T,k ey, Sy ——== e}, Sh—

(Wi my W VIIEAVI,CA) —

A
IW' W IW'A (S1,85,m) > (W) A
w &{LW/,J“/) w' N (ef,el, W' 2 7/ m') e [[T’]]é
In this case it is suffices to show

e1 €V N e égVA
Vel,S1, 2], w,es, 2L, S5 w.

w; ] ’ ,
Yike, S$1=—=0¢, 51N

(new(e,T),new(e’, 1)) € < (e1,e2) | I,k eq, So - e}, Sh—

(w sz,’m,) WVIICAVIICA) —

A
IWT W IWIA (S1,S5,m!) B (W) A

w E(f‘w,,,m,) W' A (e],eb, W 2 5/ m') € [(ref())*]¢
It is clear that neither new(e, T) nor new(e’, ) is a value. So let w, w’, ep, e, X1, 23,57, S5 such
that

o new(e,T),Z1,51 > ep, S, w, L]
e new(e’,T),X,So >~ e’B,Sé,w’,Zg
By assumption neither e nor e’ are values. Hence the reductions must have happened with
ENew. Hence by inversion
e e X,S >¢eyS|,w, X
e, Xs,S2 = e}, Sh,w’, I}
o ep =mnew(ep, T)

. eé =new(e), T)
Also assume w sz/7m,] w'VEIICA V Xl C A This directly gives us a W” such that
e W' W/
o (8],85m)EW”,
o w &fw,/7m,) w’, and
o (eg, €4, W", L2/, m') € [T]¢
It suffices to show
e W” W’ We already know that.
(S1,S5,m’) Ew”. we already know that.

[}
o w &fw,, m) w’. We already know that.
e (new(eg,p),new(el, p), W”, £ £/ m’) € [(ref T)-]¢. We get this by induction.

e;1 ¢V AVei,S], 2, w.

SiFer, S = e, 81— —(pol(w) C A) A
(eae/) € (61762) A
FEW"W"” JW’' A (S7,Sa, m') > (W) A

(ef, 2, W, 2,2/, m') € [T]{)

In this case it suffices to show

e1 €V AVel, S, 2], w.

Sk e, St e, ST s —(pol(w) T A) A
(new(e, ), new(e’, 7)) € q (e1, e2) u

(FW’"W" IJW' A (S1,Sa,m’") > (W) A

(ef,ex, W 2,5/ m’) € [(ref T)]¢)
It is clear that new(e, T) is not a value. So let w, eg,X{,S] such that

o new(e,T),Z1,51 > ep, S, w, L]

By assumption e is not a value. Hence the reduction must have happened with ENew. By
inversion
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e e, X,S > ey S|, w, X
o ep =mnew(ep, T)
Hence
e ~(pol(w) E A)
and there is an W such that
e W/ OIW
o (S, Sy,m) & W
e (eg, e/, W" £,/ m') e [t']¢
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ JW’. We already know this.
e (81,S2,m’) lf>1 W', We already know this.

e (new(ep,T),new(e’,t),W” £, £’ m’) € [(ref T)1]£. We get this using the induction hy-
pothesis.

e &V AVel, ST w.

(c) (e,e’) €< (e1,e2) To b ez, Sy =55 f, S5 — —~(pol(w) T A) A
’ 1,€2
(AW W W A(S1, 85, m) & W A
(e1,e5,W”, 2,5/, m") € [t']#)
In this case it suffices to show
es &V AVe), Sh 5L w.

Z->F6,S g}e/’slg)—.‘lutﬂ/\
(new(e,t),new(e’, 1)) € < (e, es) 20 B2, 92 2y 92 (pol(w) EA)

EW”W” IW A (S1,85,m') & W A
(e, e, W 2,5/ m’) € [(ref 1)]¢)

It is clear that new(e’,T) is not a value. So let w’, eé7257 S5 such that

e new(e’, 1), 22,52 > ep, S5, w’, L)
By assumption e’ is not a value. Hence the reduction must have happened with ENew. By
inversion

o e/ X9 Sy e, ShHw' I

e e, =mnew(eg, T)
Hence

e —(pol{w) C A)
and there is an W’ such that

o W' OW

o (S1,S),m')bW”

o (e,el,W" .5/ m') e[t
It suffices to show the following:

e —(pol(w) C A). We already know this

e W’ JW’. We already know this.

e (S4,S4,m’) EwW”. we already know this.

e (new(e, 1), new(e), T), W”, £,/ m’) € [(ref 1)-]#. We get this using the induction hy-

pothesis.

2. (e,e/,W, 2,2, m) € {(v,v/,W, L, Zc,,m) | (v,v/, W, m) € [t']{}

So there are v and v’ such that e =v and e/ =V’ and (v,v/, W, m) € [t']+.
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It suffices to show
e1 ¢V N e g VA

Vey,S1, 1, w, ey, 1), S5, w'
S ke, St —==e], S| A
(mew(v, 7), new(v', 1)) € < er,e2) | T, F es, Sy ks ], S

(w “fqW’,m’) w' VI CAVIICA)—

A

IW W’ IW'A (1,85, m/) > (W) A
w gqu”,m’) W' A (e],eb, W 5 5/ m') € [(ref 1)*]¢
It is clear that neither new(v, T) nor new(v’, 1) is a value. So let w, w’, eg, eéi{, ¥}, S1, S5 such that

e new(v,T),%;,S1 > ep,S{, w, X{

e new(v’,T),Ls,So >~ eé,Sé,w’,Zé

The reductions must have happened with ENewBeta. Hence there are A, p,1,1’ such that

e T=AP
° eﬁ :l
° eé:l’

e 1¢ dom(Sy)
e I’ ¢ dom(S,)
e X=X
e Y=1,
e S =5 U{l— (v,1)}
e S/ =S U{l' — (v/,1)}
o w=1(v)
o w =1
Hence the reductions are really

4 neW(V,T),Zl,Sl - lasl U{l — (Vap)}7l’t(v)7zl
L4 neW(V/7T)> ZQ, 82 - l/a SQ U{V — (V/,‘p)}aur(vl)a Z2
Also assume 1 (v) %(AW, ") UL(WV)VELEAV Iy C A We know t/(X) <: T and t/(£’) <: T or more
specifically t/(X) <: AP and t/(£’) <: AP. Hence there must be a type B and policy p’ such that
o T =BP,
p'(Z) Cp,
p'(£) Cp and
e B<A.

It is clear that W’.3 U{(1,1’)} is an injective partial function because 1 ¢ dom(S;) and 1’ ¢ dom(Ss).
Hence it suffices to show

o (W.0,U{l,t}, W.0, U{l',7}, W .BU{(L,1")}) O W’ We have to show
- W0, U{l,t} 3 W'.0;. Let 1” € dom(W’.01). Then clearly also 1”7 € dom(W’.0; U{l,t}).
We still have to show W’.0; (1) = W'.01 U{l,t}(1"”) This is the case if 1 # 1.
We show 1” # 1: By assumption 1 ¢ dom(S;) and (S1,S2, m’) £ W’. Hence in particular

dom(W’.0:) C dom(S;). Because 1 ¢ dom(S;) therefore also 1 ¢ dom(W’.0;). But
1" € dom(W’.01). Hence we must have 1”7 #£ 1.

— W .0, U{l/,t} I W’'.05. Let 1” € dom(W’.05). Then clearly also 1" € dom(W’.0, U{l’, 1}).
We still have to show W’.05(1"”) = W’.0, U{l/, T} (1”) This is the case if 1" #£ 1'.
We show 1”7 # 1’: By assumption 1’ ¢ dom(S3) and (S1,Sa, m’) £ W', Hence in particular
dom(W’.05) C dom(Ssy). Because I’ ¢ dom(Sy) therefore also I’ ¢ dom(W’.0,). But
1" € dom(W’.05). Hence we must have 1”7 #1'.

- W .BU{(1,1)} D W’'.B. This is obvious.

148



L4 (Sl U {l — (vaT)}aSQ U {l/ — (VI,T)},TTL/) é (W/~el U{la T}aW/'GQ U {l/;T}aWI'B U {(lvl’/)})
‘We have to show
- W RAU{L1)}C dom(W’'.08; U{l,t}) x dom(W’.0, U{l’, T}).
Let (11,13) € W/.p U{(1,1')}. There are two options:

(a)

(b)

(11,13) # (L, V). In this case (11,1lz) € W’.3. By assumption (S1,So, m’) £ W', Hence
W' C dom(W’.0;) x dom(W'.05). Therefore (11,15) € dom(W’.0;) x dom(W’.03).
Then also (11,13) € dom(W’.0; U{l,t}) x dom(W’.0, U{l’,t}).

(11,13) = (L, V). It suffices to show (1,1') € dom(W’.61 U{l,t}) x dom(W'.0; U{l’,t})
which is clearly the case.

- V(lh 12) € WIB @] {(17 V)}.W/.Gl U{l, T} (11) = W/.eg @] {1/,’['}(12) AN
(SIU{I — (V7T)} (11)7 SQU{lI — (VlaT)} (12)7 (WIGIU{L T}7W/'GQU{1/7T}7W/"3U{(l>l/)})7ml) €
[[W’.Gl U {17 T} (].1”]{}
Let (11,1) € W/. U{(1,1")}. There are two cases:

(a)

(11,1) # (LV). Then (11,l2) € W’.3. Because (S1,Ss, m’) W' we know W' B C
dom(W.01) x dom(W.03). Hence

x 11 € dom(W.0) and

x lp € dom(W.0,).

By the same argument as in the previous case this means that

x 1 #£1

* lg £ 1.

Therefore

(51,52, m'

A !’
W0, U (L1)(1) = W0, (L) 2OPWIW 0y (1) = W05 UL, T} (L)

We also get

* (S1(L1), S2(l2), W/, m') € [W'.0, (L) T4

from (S1,S2, m’) 2w, We have already shown in a previous case that (W'.0; U
{1, t}, W.e, U{l’, 7}, W .p U{(L,1")}) 3 W'. Hence we get

* (S1(l1),S2(l2), (W0, U{l, T}, W .0 U{l, 7}, W' B U{(L,l")}), m') € [W".0;(L1)]
by Because 11 # 1 and 15 # 1 this is equivalent to the remaining subgoal.
(11,12) = (1,1/). In this case

W.0,U (LT (L) =W.0,U (1) =1=W.0,U [, 1)) =W".0,U (1, 71)(l2)

The second subgoal simplifies to (v, v/, (W’.0.U{1, T}, W .0o,U{l, t}, W/ .BU{(1,1")}),m’) €
[l
T has the form AP. We do case analysis on whether p C A or not:
i. pCA.
We do case analysis on 1(v) %{lw',m’) ULWVIVELLEAVI; C A

A L(v) =0y my L)

The only rule with which 1¢(v) %(ﬂw, ) 12(v’) can be derived is extend-T as it is
clear from the structure of the observations that neither refl nor extend is appli-
cable. high is also not applicable because p C A by assumption.

By inversion

w o (v, W m') € [t]4.

The goal follows by
B. L, CAVI, CA

First we show that p’ C A: By assumption £; 2 X, £, 2 X/, p/(X) C p and

p/(£') C p. Hence by and transitivity (Comma 1)
w p/(Z1)Cpand

= p'(Z2) Cp.
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In both cases (X1 C A and Ly C A) we get p’ C A by [Lemma 8.46

Now we can continue with the main proof. We already know (v,v/,W,m) €

[[Bp/ﬂ{}. Because p’ C A, this means that (v,v/,W, m) € [B]4. By
(v,v,W,m) € [A]#. From this we can directly follow (v,v/,W,m) € [AP]{
because p C A by assumption. The goal follows by [Lemma 8.25| and [Lemma §8.24]
ii. pZA.
Because p £ A, it suffices to show
* (v, W.0U{l,t},m’') € [A]vy and

£ (VW .0, U{l,hm’) € [A]v.

By it suffices to show
* (v, W.01,m’) € [Aly and

* (v’,W’.627m’) S ’—A]V
From (v,v/, W, m) € [BP' |4 we get
* (v, W.0;,m') € [B]y and

x (v, W'.02,m’) € [B]v

by |Lemma 8.22|, the definition of [BP']y and We get the remaining
subgoals by |[Lemma 8.6}
— (S1U{l— (v,7)},m')>W’.0; U{l,1}. For this we have to show
* dom(W’.0; U{l,1}) C dom(S; U{l — (v,T)}).

S1,S2,m/ bW’

dom(W'.0; U{l,1}) = dom(W’.61) U {1} ( C dom(S;) U{l} = dom(S; U
{L— (v, 7)}).

* VI € dom(W’.0,U{L, t}).(S1U{l — (v, T)} (1), W’.0,.U{L, T}, m’) € [W’'.0,;U{l, T} (1")]v.
Let 1”7 € dom(W’.0; U{l,t}). There are two cases:

(a) 17 # 1. In this case 1”7 € dom(W’.01). By assumption (S1,S2, m’) £ W', Hence also
(S1,m')>W’.0;. Therefore in particular (S;(1”), W’'.0,,m’) € [W’.01(1”)]v. Because
1" % 1 this is equivalent to (S; U{l— (v, )} (1), W’.01,m’) € [W".0; U{L,t} (1")]v.
We get the claim by
(b) 1”7 = 1. In this case the goal simplifies to (v, W’.0; U{l,t},m’) € [t|v. By as-
sumption (v,v/,W,m) € [[Bp']{}. Bytherefore (v,W.8;,m) € [BP ]y.
By the definitions of [BP ]y we directly get (v, W.0;,m) € [B]y. From that we get
(v, W.0;,m) € [A]y by [Lemma 8.6, We get (v, W.0;,m) € [AP]y by definition. The
goal follows from [Lemma 8.4} and [Lemma 7.2|
*x V1”7 € dom(W'.0; U{l,t}).W’.0; U{l, 1} (") = type(S1 U{l — (v, T)},1").
Let 1”7 € dom(W’.0; U{l,t}). There are two cases:
(a) 1”7 # 1. In this case 1”7 € dom(W’.0;). By assumption (S1,S2, m’) £ W', Hence
W’.01(1"”) = type(S1,1”). Because 1” # 1 this is equivalent to the goal.
(b) 1”7 =1. In this case the goal simplifies to T = 1. This is clearly the case.
— (S U{l/ — (v, 1)}, m") > W'.0, U{l’,t}. For this we have to show
x dom(W’.0, U{l',1}) C dom(Sx U{l' — (v/,1)}).
(S1,S2,m" )W’
dom(W'.0, U{l',t}) = dom(W’.05) U{l'} c dom(Sy) U{l'} = dom(S2 U
{U'— (v, o)}.
* VI € dom(W’.05 U{l/,T}).(So U{l' — (v, T)}(1"),W'.0, U {l',t}, m') € [W'.0; U
{7} (1")]v. Let 1”7 € dom(W’.02 U{l’,1}). There are two cases:

(a) 1”7 £ 1. In this case ” € dom(W’.05). By assumption (Sy, Sy, m’) £ W', Hence also
(S2, m’)>W'.05. Therefore in particular (S3(1”), W’.02, m') € [W’'.02(1")]y. Because
1" # 1/ this is equivalent to (S;U{l" — (v, T)} (17), W'.02, m’) € [W’'.0,U{1, T} (1) ]v.
We get the claim by

(b) 1 =1'. In this case the goal simplifies to (v/, W’.0, U{l’, T}, m’) € [T]y. By assump-
tion (v,v/,W,m) € [BP']{. By [Lemma 8.22| therefore (v/,W.02,m) € [BP']y.By
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the definitions of [BP']y we directly get (v/,W.03,m) € [B]y. From that we get
(v/,W.05,m) € [A]y by [Lemma 8.6f We get (v/,W.05,m) € [AP]y by definition.
The goal follows from [Lemma 8.4] and [Lemma 7.2]

x V1”7 € dom(W'.0, U{l', t}). W'.0, U{l', T} (1) = type(S2 U{l" — (v/,p)},1”).

Let 1”7 € dom(W’.0, U{l’,t}). There are two cases:

(a) 1”7 # V. In this case 1” € dom(W’.0;5). By assumption (Sy,S,, m’) £ W', Hence
W’.05(1") = type(S2,1”). Because 1” = 1’ this is equivalent to the goal.

(b) 1”7 =1'. In this case the goal simplifies to T = . This is clearly the case.

~A
* LeV) Z{iwie,u00,wr 0,00 0w 7 puiLL ), me) Le(V)-

We do case analysis on the visibility of p.

(a) p Z A. Because pol(t) =p we get the claim by high.
(b) p C A: By extend-t it suffices to show
- (L) e W.BU{(1,1")}. This is obvious.
= (v,v/, (W0, U{l, T}, W0, U{l/, 7}, W'.B U{(L,l")}), m) € [T]%.

By [Lemma 8.25|it suffices to how [Lemma 8.45|it suffices to show (v,v/, W', m’) € [t]4.

We do case analysis on 1(v) %{lwgm') LWVIVIL,CAVI; CA

i Le(v) %quxm') 12(v'). This must have been derived by extend-t. We get the goal
by inversion.

ii. L1 CAVI,C A

First we show that p’ C A: By assumptionX; D X, %5 D X/ p/(Z£) C pand p’(X’) C p.

Hence by and transitivity (Lemma 4.1)
ww p/(Z) Cpand

w  p'(Z) Cp.
In both cases (£; E A and Xy C A) we get p’ C A by [Lemma 8.46

By|Lemma 8.25|it suffices to show (v, v/, W, m) € [t]{. We already know (v,v/, W, m) €

[t 1% Because T’ = BP’ this gives us (v,v/,W, m) € WBP,]]{}. Because p’ C A we have

(v,v,W,m) € [B]{. By [Lemma 8.31| we get (v,v',W,m) € [A]{. (v,v/,W,m) €

[AP]4 follows because p C A. As T = AP this shows the goal.

o (LU, (W.oUu{l,t}, W .0, U{l',7}, W .BU{(L,1")}),Z, L', m) € [f(T’ef(T))L]?.
It suffices to show (1,1, (W’.0; U{l, AP}, W".0, U{l", AP}, W'.BU{(1,1")}), m’) € [(ref(AP))+]+.

Because L C A (Lemma 4.19) it suffices to show (1,1, (W’.0; U{l, AP}, W'.0, U{l", AP} W' B U
{(L,1"}), m’) € [ref(AP)]%;. This means we need to show

- W.0; U{l,AP}(1) = AP = W'.0, U{l', AP} (1’). This is clearly the case.
— (L) e W .BU{(1,V")}. This is clearly the case.

O

Lemma 9.2. If (e1,ef,W, 2,5/, m) € [(ref T)P]E, (e2, e, W, 2,5/ m) € [t]&, p C */, (X)) < 7/,
T(X) <:t' and ~ ~4 X/, then
(e1:=eq,ef :=e), W, 2,5/ m) € Junit"]£.

Proof. By induction on m. It suffices to show (e; := eq,e] := e, W, X £/ 'm) € [[unitJ-ﬂ?B. We already
have Z ~4 L’ by assumption. Let X, X5 such that

1, 21%,
e, D1,

o X~y ko,
W', m’ such that
e m/ < m,

o« W W,

and S, S, such that
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o (51,5, m/)E W
There are two cases:
1. (e1,e], W, L, m) € [(ref T’)pﬂﬁﬁ. This leaves us with three further cases:
e1 ¢V N e g VA
Vel,S1, 2], w,es, 2, S5 w.
Sk e, ST 2L el SIA

1.5t
w’;x5

(a) (e1,ey) €< (er,e2) | I,k eq, So === e), S} —

(W~ my W VIIEAVIICA) -

IWTWY IWA (S],S4,m) B (W) A

W By WA (ef,e5, W, 21 m!) € [(reft')P]¢

In that case it suffices to show

el gV A e d VA
Ye!,S!, 5!, w, el ), 84, w'.

Tikey St ==¢[,S] A
(e1:=ez,ej:=e5) € (er,ea) | I,k ey, Sy — e;, Sy —
(W~ @ VI EAVI,CA) =
A
AW W IW' A (81,85, m") > (W) A
W By WA (ef,ep, W 1 m/) € [unitt ¢
Neither e; := ez nor e} := e is a value. So let w, w’, ep, ep, X7, L3, S7,S5 such that

o e1:=e9,X1,51 > ep,S,w, X
e e :=¢€5,%2, 5 ~e;, S5, w55
Since neither e; nor e is a value and therefore also not a location, the reductions must have
happened with Eassignl. Hence by inversion
e1,X1,S1 = e, S],w, X{
ef,X2,S2 > e{,S5, w’, X}
€ =€ =63

eg = e[ =¢)
Also let w sz,’m,)
o W/ JIW',
A
( 17 Sé7m/) > WN)
w Equw,m') w’, and
(er, e[, W, £, 5/ m') € [(ref T/)PT#
It suffices to show
e W” JW’. We already know that.

(S1,S5,m’) EW”. We already know that.
1592

w'VEICA V X, C A This directly gives us a W” such that

[

o w Equ” mry W', We already know that.

o (e :=ey, el :=eb, W' L 2 m') € [unitt]# We have W” I W by transitivity (Lemma 7.2)).
1 2 E

Hence we also have (e, e5, W” £, £/ m') € [T]¢ by [Lemma 8.29] We get the claim by in-

duction.
e1 ¢V AVei,S1,2, w.

Sk er, ST el SU— —(pol(w) C A) A
AW W” JW' A (S],So,m’) & (W) A
(e],ea, W, 2,2/, m/) € [(ref T/)PT¢)

In this case it suffices to show

(b) (e1,e1) € { (e1,e2)

er ¢V AVel,S!, 51, w.
Sk e, S1 == el S1 — —(pol(w) T A) A

(W W" JW' A (S],Ss,m) & (W) A
(e1,e2, W 2,5/ m’) € [unitt]#)

(e1:=ey,e] :=e3) € { (e1,e2)
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It is clear that e; := ey is not a value. So let w,eg, Z{,S] such that
o e1:=e9,X1,S1 > ep, ST, w, X
By assumption e; is not a value and therefore also not a location. Hence the reduction must
have happened with Eassignl. By inversion
e e;,X,S1 = e, S],w, X
® e =€ :=¢€
From our assumption we get
e ~(pol(w) C A)
and there is an W such that
e W/ OIW
o (S, Sy, m/) B W
e (e, e], W £,/ m') € [(ref T')P]¢&
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ O W’ We already know this.
o (81,S2,m’) Ewr. We already know this.
o (ep:=eg, el :=¢e}, L, 2 m') € [unitt]#. We know (er, e}, W, £, £/, m’) € [(ref T/)P]{.

We get (e, es, W’ £ 5/ m/) € [t]# by |[Lemma 8.29, The goal follows using the induction
hypothesis.

e &V AVel, S 5L w.

(@) (evel) € 4 (er,a) Ty F ey, So === e}, S§ — —(pol(w) C A) A
y &1 )
(EBW”.W” IW' A (S1,85,m/) & W” A
(e1, e, W 5,5/ m’') € [(ref T')P]¢)
In this case it suffices to show
e &V AVel, S) 7L w.

S Yo b ey, So == e}, S, = —(pol(w) C A) A
(e1:=ez,e] :=e3) € { (e1,e2)

(BW".W" I W' A (S1,S5,m') & W A
(er, ey, W” 2,5/ m’) € [unitt]#)
Clearly e := ej is not a value. So let w, ep, 25,55 such that
e ej =65 %252 - ep, S5, w, L)
By assumption e is not a value and therefore also not a location. Hence the reduction must
have happened with Eassignl. By inversion
e e,25, Sy~ e[,S5 w, L
® ep =e| =g
From our assumption we get
e —~(pol(w) C A)
and there is an W’ such that
e W' OW
o (S1,S),m')bwW”
o (e, e[, W" £,/ m') € [(vef T')P]¢
It suffices to show the following:
e —(pol(w) C A). We already know this
e W JW’. We already know this.
e (54,S4,m) EW”. We already know this.
o (e := ez, ef == es, T, m') € [unitt]g. We know (er,e{,W” £, £/, m’) € [(ref T/)P]{.

We get (e2,e5, W, 2,2/, m/) € [T]¢ by |[Lemma 8.29, The goal follows using the induction
hypothesis.

153



2. (er,e[, W, 5,2/, m) € {(v,v/,W,%c,,Lc,,m) | (v,v/, W, m) € [(ref T/ )PT}

Hence e; and e are values v; and v/ respectively such that (vi,vi, W, m) € [(ref t/)P]4. Either p C
A or p Z A. In the first case (v1,v], W, m) € [ref T/]# and in the second case both (vi, W.0;,m) €
[ref /]y and (v{,W.03,m) € [ref T']vy. In both cases this means that there are locations 1 and 1/
such that

® €| — l,,

o ef=1"and

o« W0, (1) =1/ = W.0,(U).

This leaves us with two cases again:

(a) (eg, €4, W, X, 2/ m) € [T] éﬁ. There are again further cases:

e1 gV N e g VA
Vel,S1, 2], w,es, 20, S5 w'.
Siken, Sl e, SIA
i (es,e5) € { (e1,€0) | Tk en, Syt ], S
(W my W VIIEAVI,CA) —
TWIW D WA (S],S5,m!) B (W) A
w &{LW/,m,) W' A (ef,eb, W 2 5/ m') e [t]#
In that case it suffices to show

€1 ¢ VA (] ¢ AVAVAN
Ve, Si, 2, w,ep, 25, Sh, '

w;X]
Zl Fel, Sl :‘>€{, S{ A

w’;x)
(e1,€2) | 2ok en, So =——=>¢e}, S, —

(W my W VIIEAVI,CA) —

IWTWT IWIA (81,85, m) B (W) A
w &{LW/,W,) W' A (ef,eb, W 2 57/ m') € [unitt]{

(l:=eq,1l":

e

N~
—
m

Clearly 1:= ey and 1’ := e} are not values. So let w, w’, eﬁveéa ¥1,%4.S1,S4 such that
e l:=ey, 2,51 > €g, S{, w, Z.i
o l':=¢e5,%5,5; = e;, S5, w', X5
Since es and e} are not values by assumption, the reductions must have happened with
Eassignr. Hence by inversion
e, %,5 =e,S],w, ]
e}, X9,Sy e, Shw' X
o eg=1l:=e

° e/ _ l/ . e/
p=l =6
Also let w Q:flw,,m,) w'VI{CA V X, C A This directly gives us a W” such that
e W' J W',
A
(81,83, m') > W",
o w &flw,, my W', and
o (ere/,W”, L5/ m)e [r]{
It suffices to show

e W/’ JW’. We already know that.
(S1,S4,m") EW” . We already know that.

[ )
o w &(Aw”,m/) w’. We already know that.
o (L := el := e, W L5 m) € [unith)]§ We have W” I W by transitivity

(Lemma 7.2)). Hence we also have (1,1, W”, £ 5/ m’) € [(ref t/)P]# by [Lemma 8.29
We get the claim by induction.
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ii.

iii.

e;1 ¢V AVei,S], 2, w.

Sk er, S1—2Eh el S! s —(pol(w) T A) A
(e2,e3) € 1 (e1,e2) M
(AW W”" JW’' A (S1,Sa,m') > (W) A
(e1,e2, W 2,5/ m') € [t]¢)
In this case it suffices to show
e;1 ¢V AVey, S|, 2, w.
Lim sl e € 4 (er.e) Tibep, S —el, S > —'(p;)l(w) CA)A
FEW" W W' A (S],Se, m") > (W) A
(e1,e2, W 2,5/ m’) € [unitt]#)
It is clear that 1 := eg is not a value. So let w, eg,X{,S{ such that
o li=e9,21,51 > ep, S, w, X}
Because es is not a value the reduction must have happened with Eassignr. By inversion
® e,%,5 =e,S],w, X
o epg=1li=e

From our assumption we get
e ~(pol{w) C A)
and there is an W/ such that
o« W/ OW/
o (S!S, m/) b W"
e (er,es, W' L 5/ m') e [t]#
It suffices to show the following:
e —(pol(w) C A). We already know this

e W’ J W’ We already know this.

e (51,52, m’) 2 W’ We already know this.

o (Li=e,:=e5, 2,5/ m) € [unitt]g. We know (e,,e5, W’ £, 5/ m') € [t]#). We
get (LU, W" 2.5/ m') € [(ref t/)P]# by [Lemma 8.29, The goal follows using the
induction hypothesis.

ea &V AVel, SL 2 w.

/ To b en, Sp s eh ) S4 — —(pol(w) T A) A

(e2,e3) €  (e1,€2) A

FEW"W"” JW’' A (S1,85, m") > W” A

(61, eéa WN) Z‘v Z/a m/) € WTﬂé)

In this case it suffices to show

ea &V AVel, SL, 2] w.

So b en, Sy = eh, Sh— —(pol(w) T A) A

(L:=eq,l':=¢€}) € ¢ (e1,e2) o L2 (pA( JEA)

FEW"W"” JW’' A (S1,85, m") > W” A

(617 eéa W”7 Zv Z/v m/) € ﬂrunltj_-"‘é)

It is clear that 1" := ej is not a value. So let w, eg, X3, S5 such that
o 1 := eé, ZQ, So = eé, Sé, w, Zé

Because e} is not a value, the reduction must have happened with Eassignr. By inversion
i 657 227 52 - 61/'7 Séa w, Zé
o ep=1:=e;

From our assumption we get
e —(pol(w) C A)
and there is an W/ such that
e W/ JW
o (S1,S5,m") B W”
e (eg,el, W £ 5/ m') € [t]¢
It suffices to show the following:
e —(pol(w) C A). We already know this
e W’ O W’ We already know this.
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e (54,84, m’) EW”. We already know this.

o (Li=eyl/:=¢e/, 5,2/, m) € [unitt]£. We know (es, e/, W” £,/ m’') € [t]#. We
get (LU, W" £ 5/ m') € [(ref T)P]¢ by w The goal follows using the
induction hypothesis.

(b) (62765,W,Z,Z/7m) € {(V,V',W, ZCvm) | (V7\1/7W, m) € WTﬂ‘\é}

In this case e; and e} are values v, and v}, respectively such that (ve,v5, W, m) € [t]5.

It suffices to show
€1 ¢ v A €2 ¢ VA
Vel,S1, 2, w, ey, 2L Sh w'.

v;X]

Tikep, S —=el, SN
(Li=vo, U :=v) €4 (er,e2) | 5, F ey, Sy == e}, S, —
(u)%(ﬂw,m,) W VI CAVI,CA) —

IWTWY IWA (S],S4,m) B (W) A
y WA (el eq, W L1/ m') € [T]g

~A
w ~
—(W”,m’

It is clear that both 1 := vy and 1’ := vj are not values. So let w,w’, eg, eéJZ{,Zé,SLSé such
that

o 1:=v9,%1,51 > eg,S7,w, X}

o U':=v), 25,52 = ep, S5, w’, 1)
Since vo and v} are values, the reductions must have happened with Eassign. Hence

e L& dom(Sy)
el e dOTTl(SQ)
° ep =)
=()

o w=lype(s,,v(v2)

e w' = léype(SQ,l’)(Vé)

o S =Si[L— (vo,type(S1,1))]

o 55 =S2[l" — (v3, type(S2,1'))]

e X =2

e X =1,
So the reductions are really

o L:i=v5,21,51 > (),S1[l— (va, type(S1, V)], Liype(s, 1) (v2), 1

o U:=v5,55,85 = (), Sall! = (va, type(Sa, U))], Ly ors, 1y (V2): 2
Also assume Lyype(s; 1) (va) sz,7m,) Uype(s, 1 (vVa) VI CAV I, E A We know 1(Z) <: v,
T(X') <: 1/, and p E 1T’. More specifically T has the form A9 and t’ has the form B" and therefore
A9(X) <:B", A9(ZL’) <: B", and p C B". Hence

e q(f)Cr,

° q(X)Cr,

e A <:B,and

epL.

eg
!
s

By assumption
e WH(l) =1 =B".
Because W/ J W and W’.0,(1) = W’.05(1"), also
e W.0:(l) =B" =W'".05(1").
From (S1,S2,m’) EW we get (S1,m’)>W'.0; and (Sg, m’) > W’.0,. Consequently
e W .0:(1) = type(Sy,1) and
e W .05(l') =type(Sa, V).
We already know what W’.01(1) and W’.05(1’) are, namely B". Hence
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e type(Sy,1) =B" and
e type(Sy, 1) =B".
It suffices to show

e W/ I W'. We get this by reflexivity (Lemma 7.2]).

o (Si[l— (va,type(S1,1))], Soll" — (v3, type(S2,17))], m’) S

w'.
We have to show
- W B CW.0, x W .0,
We get this from (S1, Sy, m’) Ew
- V(ly,1p) € W/[?) W’.61(11) = W/.eg(lg) A\
(S1[t— (vo, type(S1, V)I(L1), S2ll/ — (va, type(S7, U)](12), W/, m') € [W’.01(L)]5.

Let (11,12) S W/f) We get W’.Gl(ll) = W/.eg(lg) from (31,527111/) ‘é W’'. All that re-
mains to be shown is (S1[l — (va, type(S1,1))1(11), Sall’ — (vi, type(S,1)I(12), W, m’) €
[TW’.01(11)]%. There are four cases:

i1l # land Iy # . Because (S1,S0,m/) b W' we know W'.p C dom(W.0;) x
dom(W.0s). We also get
* (S1(11), S2(la), W/, m’) € [W’.0:(11)]%

from (S1,S2,m’) £ W', Because l; # Ll and 1y # U this is equivalent to the remaining
subgoal.
ii. 11 =1 and 12 7é .
In this case it suffices to show (v2, Sa(l2), W/, m’) € [B"]#. We do case analysis on
the visibility of r.
A. v C A: We will show that this is impossible.

By transitivitywe get p C A. By assumption (1,1, W, m) € [(ref t/)P]+.
Because p C A (1,17, W, m) € [ref t/]#. By|Lemma 8.25/(1,l', W', m) € [ref t']4.
In particular this means
w (L) e W.B.
By assumption W’.$ is an injection and therefore in particular a function. Hence
there can be no other 1”7 # 1’ such that (1,1”) € W’.3. But by assumption
(L) eW .Bandly #1. ¢.

B. v [Z A In this case it suffices to show
w  (vo, W.01,m’') € [B]y. Wealready know (ve,v5, W, m) € [t]5. By|Lemma 8.22)
and [Lemma 8.4 we have (vo, W’.01, m’) € [T]y. Ast = A9 this gives us (vo, W.0;, m’) €
[Alv. The goal follows by [Lemma 8.6]
ww (So(ly), W/, m') € [B]y. Because (Sq, m')>W'.05 we have (Sa(lz), W .02, m’) €
[W’.02(12)]v. By assumption (1,1s) € W’.3. Because (S1, S, m’) & W/ this means
that W’.01(1) = W’'.05(1ly). We have already seen that W’.0:(1) = B". Hence
(S2(l2),W’.02, m’) € [B"]y. The goal follows by the definition of [B"]y.

iii. 13 # land l; = V. By assumption (11,1’) € W'.3. Because (S1,Ss, m’) £ W' this
means that W’.01(1;) = W’.05(1’). We have already seen that W’.0,5(1’) = B". Hence
it suffices to show (S1(l1),v5, W/, m’) € [B"]#. We do case analysis on the visibility

of r.
A. r C A: We will show that this is impossible. By transitivity we get
pC A

By assumption (1,1, W, m) € [(ref t/)P]5. Becausep C A (I,1/, W, m) € [ref T/]+.
By [Lemma 8.25| (1, 1/, W/, m) € [ref t/]%. In particular this means
= (LU)c W.B.
By assumption W'.3 is an injection. Hence there can be no other 1" # 1 such that
(1”,1") € W’.B. But by assumption (1;,1’) € W’'.f and 1; # L. 4.

B. r Z A In this case it suffices to show
w  (Si(L), W, m') € [B]y.
Because (S1, m’)>W’.0; we have (S;(1;),W'.0;,m’) € [W'.0;(11)]v. W.0:(L;) =
B". Hence (S1(11),W’.0;, m’) € [B"]y. The goal follows by the definition of [B"|y.
= (vé,W’.Gg,m’) S ’—B]V
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We already know (v2,v5, W,m) € [t]#. By [Lemma 8.22| and [Lemma 8.4 we have
(v5,W'.05,m’) € [t]v. As T = A9 this gives us (vj, W'.05, m’) € [A]y. The goal

follows by

iv. (L, L) = (L1).
The goal simplifies to (v2,v5, W/, m') € [BT]{.
We do case analysis on whether r C A or not:

A.

B.

rC A.
We do case analysis on lyype(s, 1) (V) (AW " Liype (S5.17) (VHOVI, CAVI; C A
This is the same as lgr(va) %qu’, " (VO VIICAVI,CA

[0 I,Br(\)g) ‘(AW/ m’) lfIBT (Vé)

of [B"]y. The only rule with which lgr(v2) sz, m) 15+ (v5) can be derived is
extend-T as it is clear from the structure of the observations that neither refl is
not applicable. high is also not applicable because r C A by assumption.

By inversion
= (V27Vé,Wl,m/) S H—BT—HG
This was the goal.

B:ZiCAVI,C A

First we show that q C A: By assumption X1 D X, X5 D X/ q(X) Crand q(X/) C 1.
Hence by and transitivity

w (X)) Crand

= g(X) Cr

In both cases (X1 C A and X2 C A) we get q C A by

Now we can continue with the main proof. We already know (vg,vi, W, m) €
[A9]4. Because q C A, this means that (vo,v5, W,m) € [A]4. By
(v2,v5,W,m) € [B]{. From this we can directly follow (vq,vi, W, m) € [B"]3
because r C A by assumption. The goal follows by |[Lemma 8.25| and [Lemma 8.24]
riZ A

Because 1 [Z A, it suffices to show

(v, W.0;,m’) € [B]vy and

= (vé,W’.eg,m’) S |—B—|V

From (vg,v5, W,m) € [A9]5 we get

(< (VQ,W/.el,m,) € |VA-|V and

wo (v, W.0,,m') € [Aly

by [Cemma 8.22] the definition of [A9]y, We get the remaining subgoals
by [Comma 5.0

— (S1[1 — (va,type(S1,1))], m’) > W’.0;. For this we have to show
* dom(W’.01) C dom(S1[l — (vo, type(Si,1))]).

(S1,52,m")EW/

dom(W’.0;) C dom(S;) € dom(S1[l— (va, type(S1, )]).
x VI € dom(W'.01).(S1[l — (vo,type(S1, I(1"), W' .81, m') € [W.0;(1")]v. Let
1” € dom(W’.01). There are two cases:

i. 1" #£1. By assumption (51732,m’)§W'. Hence also (S;, m’)>W’.0;. Therefore in

ii.

particular (S;(1”), W’.0;,m’) € [W’.0:(1"”)]v. Because 1” # 1 this is equivalent to
(51[1 — (vz,type(Sl,1))](1”),W’.91,m’) S [W’.Bl(l”)]v.

1”7 = 1. In this case the goal simplifies to (vo, W'.01,m’) € [B"]y. By assumption
(v2,v5,W,m) € [A9]4#. By therefore (vz,W.el,m) € [A9]y. By

the deﬁnitions of [Aq]v we directly get (vo, W.01, m) € [A]vy. From that we get
(vo, W.01,m 1v by [Lemma 8.6] We get vz,Wel, m) € [B"]y by definition.

The goal follows from [Lemma 8.4] and [Lemma 7.2]

* V1”7 € dom(W'.01).W'.0:(1") = type(S1[l — (va, type(Sy, 1)1, 17).
Let 1”7 € dom(W’.01). There are two cases:

i. 1”7 # 1. By assumption (Sl,Sg,m’)Jl;lW’. Hence W’.01(1") = type(S1,1”). Because
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1" #£ 1 this is equivalent to the goal.
ii. 1”7 =1. In this case the goal simplifies to W’.01(1) = type(S1,1). We get this from
(Sla 827 m/)a lé w’.
— (Sa[l/ — (v, type(S1,U))], m’) > W’.05. For this we have to show
x dom(W'.02) C dom(Sa[l” — (vi, type(S1,1))]).
A
(Sl,Sg,m')DW’
dom(W'.05) - dom(S2) C dom(Sa[l” — (vi, type(S1,1))]).
£ V17 € dom(W'.0,).(Sa[l/ — (vS, type(S!, U)I(1"), W05, m') € [W.05(1")]y. Let
1" € dom(W’.05). There are two cases:

i. 1”7 #1'. By assumption (S1,S2, m’) £ W’. Hence also (So,m’) > W’.05. Therefore
in particular (So(1”), W’.85,m’) € [W’.05(1")]v. Because 1” #£ 1’ this is equivalent
to (Soll/ — (v4, type(S1, UNI(L"), W' .05, m’) € [W'.02(1")]v.

ii. 1” =1'. In this case the goal simplifies to (v4, W’.05, m’) € [B"]y. By assumption
(v2,v5,W,m) € [A9]4#. By therefore (v4, W.02,m) € [A9]y. By
the definitions of [A9]y we directly get (v5, W.03,m) € [A]y. From that we get
(vh,W.02,m) € [B]y by [Lemma 8.6l We get (v5, W.02,m) € [B"]y by definition.
The goal follows from [Lemma 8.4] and [Lemma 7.2|

+ V17 € dom(W’.085).W'.0,(1") = type(Sall’ — (v}, pol(S],1))],17).

Let 1”7 € dom(W'.05). There are two cases:

i. 1”7 #1'. By assumption (Sl,Sz,m')éW’. Hence W'.05(1") = type(S2,1”). Because
1" =1’ this is equivalent to the goal.

ii. 1”7 = 1. In this case the goal simplifies to W'.05(1') = type(Sz,1’). We get this
from (S1,S2, m’) Swr,

~A
® ltype(sl}l)(\@) =W’ m’) l’éype(SQ,l’)(vé)'

This is the same as showing lgr (v2) &fw,7m,) 15 (v5). We do case analysis on the visibility
of r.
i. 1 IZ A: In this case we get the claim by high.
ii. 1 C A: By extend-t it suffices to show
- (L) e W'.B. By transitivitywe get p C A.
By assumption (1,1/,W,m) € [(ref t/)P]5{. Because p C A (1,1, W, m) € [ref T/ 4.
By [Lemma 8.25( (1, 1/, W/, m) € [ref t/]4. In particular this means
w (LU)e W.B.
— (vo,v5, W/, m/) € [B"]{. We do another case analysis:

Al liypers, 1y (v2) z{‘w,7m,) l;ype(s%l,)(vé). This is the same as lgr(va) sz,,m,)
15+ (v5). This must have been derived by extend-Tt because refl is syntactically not
applicable and r C A rules out high. Hence by inversion
= (va,v5, W, m') € [B']$
which is what we needed to show.

B. Z; CAor Xy C A: We first show q C A.

By assumption X; D X, X5 D X/ q(X) C r and q(Z’) C r. Hence byand
transitivity

w (X)) Crand
w (X)) T

In both cases (£; E A and Xy C A) we get ¢ C A by [Lemma 8.46

Remember that by assumption firstorder(B"). Hence by it suffices to
show (ve,v5, W/ ,m) € [B"]+. Byit suffices to show (v, vs, W, ,m) €
[B"]%. We already know (vg,vs,W,m) € [A9]{. Because ¢ C A we have
(o, vh, W,m) € [AT#. We get (vo,vh, W, m) € [B]# by The goal
follows because p C A.
e (),0,W,£,2/ m') € [unitt]&.
It suffices to show ((), (), W/, m’) € Junit!]s. Because L C A it suffices to show ((), (), W’,m’) €
[unit]s. This is clearly the case.

O
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10 Knowledge based security

Note that while we use the more general logical relation to prove security here, we still need to restrict
ourselves to firstorder-observations and therefore firstorder-state for the reasons described in the paper.
We formally define firstorder observations:

Definition 10.1. Firstorder observations are formally defined as follows

Fopen Fclose Funopen
firstorder(open(0)) P firstorder(close(0)) firstorder(unopen(o)) P
firstorder(t)
- Funclose - Fwrite
firstorder(unclose(0)) firstorder(l.(v))

Definition 10.2. For a state S we define 65 pointwise in the following way:
0s(1) := type(S, 1)

Definition 10.3 (Low States and Low Equivalence). For a state S and attacker A we define the low-state S 4
of S:
Sa={l—=,1eS|TC A}

We also define S =4 S’ as
dom(S ) = dom(S"4) AV (Sa,S'a,m) B (65,057, iddom(s )

Note that dom(S4) = dom(S’4) also means that s, = 0s:,.

Note that in the paper we define low equivalence as

dom(S4) = dom(S'4) AVm. (S,S',m) > (0s,,0s,, 1ddom(s )

So we are using the original worlds instead of the low worlds. These two
formalisations are equivalent because the world only puts a restriction on
the low locations. We use the first definition here, because it corresponds
closer to the definition in flow-locks. We use the other definition in the paper
because it allows us to avoid having to explicitly define low states.

Lemma 10.1 (Low idempotence). (S4)4 = Sa.
Proof. o C:Let (1— (v,T)) € (Sa) 4. Then by definition (1 — (v,T)) € S4.
e D:Let (1— (v, 7)) € S4. Then clearly

— (L— (v,7)) € Sy and
—TtC A.

Hence (1— (v, 7)) € (Sa)4-

Lemma 10.2 (Low preserves order). 1. If SO S/, then Sq 2 S’ 4.
2. IfS 2 S,A, then SA 2 S/A.

Proof. 1. Let S D S’. Let (L — (v,7)) € S’4. Then (1 — (v,1)) € S’ and T C A. Because S O S’ we
have (1 — (v,7)) € S and hence (1 — (v,T)) € S4.

2. By 1. S4 2 (S'4)4. By[Lemma 10.1| (S’ 4) 4 = S’4. The goal follows by transitivity.

Lemma 10.3. (S; US2), = (S1),4 U (S2) 4.
Proof. T: Let (1— (v,7)) € (S51US2) 4. Then
—pCAand
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— (= (v,T)) € S1US,.

If (1= (v,7)) € Sy, then (1 — (v,1)) € (S1)4 and hence (1 — (v,T)) € (S§1) 4 U (S2) 4. Alternatively
if (1 — (v, 7)) € Sg, then (1 — (v, 7)) € (S2) 4 and hence (1 — (v,T)) € (S1) 4 U (S2) 4.

3: Let (L— (v, 7)) € (S1) 4 U (S2) 4. There are two cases:

1. (L= (v,7)) € (S1)4: Then
- (L= W1)es
—TtLC A.
Then also (1— (v,T)) € S1 US, and hence (1 — (v, 7)) € (S1US2) 4.
2. (L= (v,7)) € (S1)4: Then
— (L= (v,71)) €S2
—T1C A
Then also (1— (v,T)) € S; U S, and hence (1 — (v,T)) € (S1US2) 4.

-5
w;Z

Lemma 10.4. If X Fe, S == ¢’, S’ and —(pol(w) C A), then S4 =S 4.

Proof. By induction on the derivation of the reduction. In most cases either S = S’ anyway, which makes
the statement trivial, or we get the claim by induction. The only interesting cases are

¢ ENewBeta
1 ¢ dom(S)
ENewBeta

S F new(v, 1), S =25 1 SU{L— (v, 1)}

Since L = L' it is clear that £, = L’ 4. We have to show S4 = (SU{l— (v,T)}) 4. Byit
suffices to show S4 =S4 U{l — (v,1)},. By assumption —(pol(l(v)) C A) and pol(l(v)) = pol(T).
Hence —(t C A) and therefore {l — (v,T)}, = 0. So the goal simplifies to S4 = S which we get by
reflexivity.

e Eassign
L € dom(S) type(S,1) ==

Eassign
le(v);Z

Thli=v,S =—= (), S[L— (v, 1)]
Since £ = ¥’ it is clear that 4 = X’4. We have to show Sy = (S[l — (v,T)]) ;. By assumption
—(pol(l:(v)) EA). Hence —(t C A).
Let (1" — (v/,t’)) € S4 We show 1’ # 1: Assume 1’ = 1. By assumption type(S,1) = t. Hence we
would have (1— (v/,1)) € S4. This would give us TC A. But T Z A. £.
Since 1" # 1 we have (1" — (v/,7')) € S[L— (v, T)]4.
Now let (I/ — (v/,1’)) € S[l — (v, T)] ;. Because T Z A we have I’ # 1. Hence (1’ — (v/,1’)) € Sx.

O

Definition 10.4 (Visible and invisible observations). An observation w is considered to be invisible to
attacker A (invy(w)), if w = € or pol(w) £ A. If an observation is not invisible it is visible.

Remark. Note that if inv4(w), in particular —(pol(w) C A), because we either have this anyway or w = €
and the policy of € is undefined.

Definition 10.5 (Traces). A finite trace @ is a series of observations w;, wo,...w,. We also define the
length of a trace len(wq,...,w,) =n. A trace wq,...,w, is called an A-low trace if all observations w;
with 1 < 1 < n are visible to A. The empty trace with length 0 is called €. To avoid confusion with the
trace containing just the single observation € we will write (€) to denote the trace containing just the single
observation e.

Note that in the paper we use captial Q for traces because the arrow did not render properly.
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Definition 10.6 (Trace reduction).

)3/ w;x’ W %k
She S==¢ S She S==2¢€S ke, S e’ S”
= single T continue
w;r % w,w’; X
ke S=—="¢ 8§ ke S e’ S”

Note that below we sometimes still use the deprecated notation e, S, >~ <

. ;.
e’.S". 7 instead of L e, S == ¢/, S

Definition 10.7 (Trace equivalence). We lift the relation z(f‘W’m) to traces in the following way: For
traces == w; ... w, and w’:= w/...w! we have

— N_A —
WS w,m) W

if for all 0 < i < n we have w; zf‘w my Wi

wW;Z] %

Lemma 10.5. If (e1,eo, W, 2,25, m) € [[ﬂ]ﬁ, and 2, F e, S == €1, S{, and 2, F ey, Sy %*

e}, S4, (S1,Sa, m—l)Jl;LW, m > 0, and both pol(w) C A and pol(w’) C A, and if then also w %flw,mq) w’

or 2/ T Aor 2, C A, then IW’' I W. (ef,es, W, 5,50, m —1) € [T]g, (51,55, m—1) & W and
!/

~A
w :(W’,m—l) w .

Proof. Because e; and e reduce they are no values. Hence (1, ea, W, L1, L2, m) € [t]¢ . Clearly £; C £,
~ : A _
30 C Xy, Xy Xy (We get this from (el,eg,W,Zl,Zg,m) € WTﬂEﬁ), wIw " m—1l<m
A
and (S1,So, m — 1) > W. There are three cases:

€1 ¢ VA €9 ¢ VA
Vei,S1, 2], w,es, 20, S5 w'.

ke, Sy %e{, SIA
1. (e1,e2) € < (e1,es) ZZF92732%657 S§—>
(Wafy gy W VIIEAVIICA) =

TWLW IWA (S, S5, m—1)5 (W) A
w E{[W/7mfl) W’ A (e{,eé’wlazlaz%m_l) € H»T‘”{EL

By inversion of e;,S1,Z; = e},S],X/, and es, S, Xo @ e}, Sh, 24 we get
e e,%,5 ~ef,S],w, ]
® e3,%9,S0 > e}, Sh w! XL,
Because we also have w %{lW,mfl) w’or £1 C A or L) C A by assumption, this gives us an W/ J W
with the desired properties.
e1 ¢V AVel, 81,2, w.

T Fer, S =5 ef, 5 — ~(pol(w) T A) A o w
2. (e1,e2) € < (eq,e2) 9 . By inversion of e1,51,Z; =
FW' W IWA(S],Sa,m—1)> (W) A

(61762,W/,Zl,22,m— ]-) € WTﬂé)

ef,S1, L1 we get
e e,%,S; =ef,ST,w, X
This gives us —(pol(w) C A) which contradicts our assumption. ¢
ea &V AVel, S, 2] w.

o b ez, Sy s e S —(pol(w) T A) A ,
3. (e1,e2) € < (e1,e2) R 22 ® A( JEA) . By inversion of ey, Sy, Lo =
AW W IWA (S1,Sh,m—1) W' A

(elaeéawlvzlaz%m_ 1) S WTﬂ‘él)

e}, S5, 2 we get
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° 62,):2,52 - eé,Sé,w’,Zé

This gives us —(pol(w’) E A) which contradicts our assumption. #

Lemma 10.6. If (S,m)>0 and m’ < m, then (S, m’) > 0.
Proof. We have to show
e dom(0) C dom(S). We get this from (S, m)> 0.
e V1€ dom(0).(S(1),0,m’) € [6(1)]v.
Let 1 € dom(6). We get (S(1),0,m) € [8(1)]v from (S, m) > 6. The goal follows by [Lemma 8.4]
e V1 € dom(0).6(1) = type(S,1). We get this from (S, m) 6.

Lemma 10.7. If (S1,S2, m) W and m/ < m, then (S1,Sy, m’) Sw.

Proof. We need to show

o W.B C dom(W.0;) x dom(W.0,). We already know this from (Sy, Ss,m) & W.

e V(L) € W.RBW.0;(1) = W.05 (1) A (S1(1),S2 (1), W, m/) € [W.0;(1)]#. Let (1,1) € W.B. We get

W.01(1) = W.05(1) from (Sl,Sg,m)élW. This also gives us (S1(1), Sa(l), W, m’) € [W.0:(1)]5. We
get the claim by

e (S1,m')>W.0;. We get the claim by [Lemma 10.6
e (So,m')>W.0,. We get the claim by [Lemma 10.6

Lemma 10.8.

If w %{lwm) w’, and W I W and m’ < m, then w %{lwgm') w’.

Proof. By case analysis on the derivation of w %flw m) w’. If the rule used was refl or high we get the
claim with the same rule. If the rule used was extend-t we get they claim by using and
on the premiss and using the same rule with the result. O

’ Il
W1y Wi, Wi Z] % Wi,..wi,w 3X5 %

Lemma 10.9. If (61,62,W721,Zg,m) € [[ﬂ]é,and 21k e, Sq 6{, {7 and 2o €9, Sy

€5, S, (S1,S5, m—1)EW, m > n+1, Vidnva (w!), ¥j.inva(w!) and both pol(w) C A and pol(w’) C A, and
if then also , w R:{lw mo1y) WorZi EAor 2] CA, then IW' I W.(ef,e5, W, 2 Iy, m—n—1-1) € [T,

A
(S1,Ssm—n—1=1)>W and w &y, 4y W

Proof. By induction on n + 1. Because e; and e reduce they are no values. Hence (e, es, W, L1, X5, m) €
"—T-ﬂé . Clearly Zl - Zl, 22 - ZQ, Zl ~A ZQ (We get this from (el,eg,W,Zl,Zg,m) S "—T-"'EAB), w | w
(Lemma 7.2), m—1 < m and (S1,S2,m—1) £ W. There are three cases:
e1 &€V N e g VA

Vel,S1, 2], w,es, 20, S5 w’.

w;X] ' ,
Zike, Si=—=ce}, SN

L (er,e2) € < (er,e2) | T,k ey, Sy —== e}, Sy —

(w %{LW,mfl) W' VI CAVI,CA) —

TWW IWA (S],S5m—1)F (W) A
w g‘(AW/7m71) W’ A (617657\/\//3217227“1_1) € “—Tﬂé

We do case analysis

(a) n=0=1 Then m—n—1—1=m—1. We get the goal by [Lemma 10.5
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(b)

. . W1, W, W w’
n >0 and 1 = 0: By inversion of e;,S1,%; =" e}],S],Z{, and ey, S2, %y = e5,S5, L) we

get that there are e, Sy, X{ such that

e e;,x,51 =ef,S{,wy, LY

® e9,Y5,Sy =€, S, w! I).
By assumption inv4(w1). Hence we have —(pol(w;) E A). Consequently w; %‘(AW,mfl) w’ by
high. Hence there exists a W’ O W such that among other things

!

%-A
® W1 =wrm-1) ®-

We show that this is a contradiction by doing cases analysis on the derivation of w; &{}V,_B w’.
i. refl: In this case wy = w’. In particular therefore pol(w;) = pol(w’). But we already know
that pol(w’) C A and —(pol(w;) C A) 4.
ii. extend-t: In this case pol(w;) = pol(w’). But we already know that pol(w’) C A and
~(pol(wy) C A) £.
iii. high: In this case pol(w’) Z A. But we already know pol(w’) C A. ¢.

’ !
LW

. . wi,.w
n =0 and 1 > 0. By inversion of e;,S;,Z; = e/,S!,Z!, and e,S2,Z, ==
get that there are ey, S5, X such that
b 61721781 = e{,S{,w,Z{
[ 62,22,82 - 65’755,7(1){,}:5/.

/ !/ /
e5,59, 25 we

By assumption inv, (w1). Hence we have —(pol(wj) C A). Consequently wj %{lw,mq) w by
high. Hence there exists a W’ 3 W such that among other things
o wi Xy, ) W
We show that this is a contradiction by doing cases analysis on the derivation of w] &(}\,,ﬁ w.
i. refl: In this case w] = w. In particular therefore pol(w]) = pol(w). But we already know
that pol(w) C A and —(pol(w]) C A) ¢.
ii. extend-t: In this case pol(w;) = pol(w). But we already know that pol(w) C A and
~(pol(w}) C A) £.
iii. high: In this case pol(w) Z A. But we already know pol(w) C A. #.
,w’

/
yeer W, Wi

n > 0and 1 > 0: By inversion of e1, Sy, Z; =% e/ S/, £/ and ey, Sg, Lo
we get that there are e, ey, Sy, S5, X1/, X4 such that

Wy AR
= e2752a22

"oQn "
° elazlasl - e17sl7wlazl
" 1 L2500, oy ey
e e Xy, S = e, S, X1,
"oQn AR
® e3,25,5y >~ 627527(”17227

o e Ty 8y e gt sy
By assumption inv4 (w{). Hence we have —(pol(w;) C A). Consequently w] zle’mfl) wj by
high. Hence there is a W' such that
e W IW,
(S/,SY m—1)E W/,
w1 &fw,)m_l) wj and
(ef el W' £, 55, m—1) € [T]{.
By [Cemma 10.7] we get
o (SI,SU m—2)FW.
Note that m — 2 > 0 because m > n + 1 and both n and 1 are at least 1. We also have

m—1>n+1—1>(n—1)+(1—1). We also get by [Lemma 10.8| that

!

* WA (mony) @
Hence we get by induction that there is a W such that

e W/ W/,

o (ef,es, W 51,5, (m—1)—(n—1)—(1—1)—1) € [t]¢ and

o (S84 (m—1)—(m—1)—(1-1)—1)FW".
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A
* W= (o) (ne)- (1)1 @
To show the goal it suffices to show

e W’ JW. We get this by transitivity (Lemma 7.2)).

o (e, el W 51 5o m—n—1—1) € [t]#. Because m—n—1l—1l<m-n—1l=(m—-1)—
(n—1)—(1—1) — 1 we get this by [Lemma 8.29

° (S{,Sé,m—n—l—l)éW“. Because m—n—1l—-1l<m-n—-1l=(m—-1)—(n—1)—(1—-1)—1
we get this by

o WAy mn 1 W Becausem—n—l-l<m-n—l=m-1)—n-1)—(1-1)—-1
we get this by [Lemma 10.8]

e1 ¢V AVei, S, 2], w.

SiFer, S1 b ef, S — —(pol(w) £ A) A

EW' W IWA(S],So,m—1) 5 (W) A
(61,627\/\/,7217227“1_ 1) € WTH{EL)

‘We have to consider two cases

2. (e1,e2) € < (e1,e2)

(a) n=0. By inversion of e;,S;,Z; = e}, S/, Z! we get
hd elazlasl - e{,S{,w,Z{

This gives us —(pol(w) C A) which contradicts our assumption. ¢

15.-Wn, W

(b) m > 0. By inversion of e1, Sy, Z; ™Y el [ S1 5! we get that there are e/, S, £/ such that

e e,%,S1 =ef,S{,wy, LY
o e Ly, Sy er gt v

Hence there is a W’ such that
e W IW,
o (S/,Sym—1)b W/,
o (e ea, W L1, 55, m—1) € [1]£.

By [Lemma 10.7 we get
o (S, Sy, m—2)b W

Note that m — 2 > 0 because m > n+ 1 and n is at least 1. We also have m—1> (n+1)—1=

(n—1) 4+ 1. We also get by [Lemma 10.8| that
/

~A
® D ¥wr (m-1)-1) ¥

Hence we get by induction that there is a W’ such that
e W/ W/,
o (e, el W 51,5 (m—1)—(n—1)—1—1) € [7]¢ and
o (SI.Sh(m—1)—(n—1)—1—1)5W".

/

owEf w

wW” (m—1)—(n—1)—1-1)
To show the goal it suffices to show

e W JW. We get this by transitivity .
o (ef,e, W' 5, 5o, m—n—1-1) € [1]{.
m—-n—1l—-1=(m—1)— (n—1)—1—1, so we already know this.
o {,Sé,mfnfl—l)éW”.
m—-n—1l—1=(m—1)—(n—1)—1—1, so we already know this.
o w E{LW”,m—n—l—l) w. m-—n—1l—-1=(m-1)—(n—1)—1—1, so we already know this.

es ¢V AVel,Sh, 1, w.

Toteq, So LU:h> e}, Sy — —(pol(w) C A) A ]
3. (e1,e2) € < (er,e2) u . We have to consider two
(FIW W JWA(S1,S,,m—1)> W' A

(ela eé,W’, Zlv 225 m— 1) S "—T‘"‘é’)
cases

165



a) 1= 0. By inversion of es, So, Lo w:>, e, S5, L) we get
Yy 25925 &2 g
® 9, ZQ, SQ - 65, Sé, (,UI, Zé
This gives us —(pol(w’) E A) which contradicts our assumption. #

’ ’
Wisee Wy, W

(b) 1> 0. By inversion of es, Sz, Ly e), S5, X, we get that there are ey, SY, 2 such that

1 /! / /!
° 62,22,52 >‘ 627527(1)1,22

wh L, wlh,w’
o e 5,8 TS ey, Sh b,
Hence there is a W’ such that
« W W,

L (Sl,sé/,m_l)ﬁwlv
o (elaeélawlathQam_l) € H—T—"‘é
By [Cetmma 107 we get
o (S1,S),m—2)F W
Note that m —2 > 0 because m >n+ 1 and 1is at least 1. We also have m—1> (n+1)—1=

n+ (1—1). We also get by [Lemma 10.8| that

~A !
® W™ wr (m-1)-1) ¥

Hence we get by induction that there is a W’ such that

° WNQW',

hd (e{,eé,W”,Zl,Zg, (m_ 1) —n— (1_ 1) - 1) S H—T-H‘El and
o (S{,S4(m—1)—n—(1-1)-1EW"

o WA /

W7 (m—1)—n—(1—1)—1) ¥
To show the goal it suffices to show
e W” JW. We get this by transitivity (Lemma 7.2)).
b (e{?eéﬂwﬂvzlaZQaminili 1) € ”—T-ﬂ‘é
m—n—1l—1=(m—1)—n—(1—1) —1, so we already know this.
o {,Sé,mfnfl—l)éW”.
m—-n—1l—1=(m—-—1)—n—(1—1) —1, so we already know this.
w.m—nm—-1l—-1=(m—-1)—n—(1—1)—1, so we already know this.

O

%\A
e w —(W” m—nm—1-1)

Definition 10.8 (Low projection of a trace). We define 4 in the following way:

{e ,ifinvg (w) - {(G’A ,if invg (w)
Wy = )

. ((U, w’ A — .
w , otherwise w,w’q , otherwise

We define reduction with A-visible traces. Note that the reduction reports the active lock set of the last
visible observation.

Definition 10.9 (A-visible trace reduction).

% 5 _
Zl—e,S(U:>A e’ S” The S =—=c¢' § invy (w)
T x no-red A inv-red
Zl—e,S:Ae,S ZI—e,S:>Ae,S
55 % ;x/ .
ZI—e,S“:>A e’ S” The S ==¢' § —invy (w)
T vis-red
@, w;
ke S I e/, S’

We sometimes still use the deprecated notation e, S, 2, :u);A e’,S", 2" in
. . 0;2’
this document instead of Z e, S i——fl;l e, S’
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We prove that there is a sensible connection between visible trace reduction and normal trace reduction.

w;x”

Lemma 10.10. If e, S =—¢”,S” and Z +e”, S” ‘“’:wﬂe S’, then

e if inv4(w), then = ke, S :*;’;[ e, s/

e if minv4(w) and

/"
w;x

Vi
— W =¢,then ZFe §S—— Ae S

w,o;x’

—w;és,thenne,Siﬁeas'.

(U_

Proof. By induction on > t-e”, S” :>.A e, S

e no-red. In this case

— W =¢ and
- Y =3
— el ="
— 8§’ =5

We do case analysis on inv 4 (w).

1. invg(w). It suffices to show = e, S :h>*A e”, S” We get

T no-red
the S=, ¢S She S e 8" inva(w)
inv-red
S ke S g2 % // S// mvre
=€
2. —inv4(w). It suffices to show ~ e, S %‘A e”, S”. We get
T no-red
Ite S=eS e,2,S=e”, 8" w, "  —invy(w) .
vis-red

e, S, L=, ¢",5" 15"
e inv-red. In this case
_ 6”, SN, 5 :“)>A e///, S”/, s/

e//I7 S/I/’ Z — 6/7 S/’ (,U/7 ZI/I

— invg(w)’.

We do case analysis on inv g4 (w).
1. invg (w). By induction
~ e, S, Z=S,e",8" 1
Hence by inv-red e, S, X =% e85,
2. —inv4(w). We do another case analysis:
(a) & = e. By induction
— e, 57 5 :°U>A e///7 S///, pRU
Hence by inv-red e,S,Z ==, e’,S’,L".
(b) @ # &. Then by induction
w, )
— e S Z : ///,S///,Z/

Hence by inv-red e, S, I =27 ¢/,S/, 5.
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e vis-red. In this case

w

_ e//’S//’Z 3/{ e”/,SIH,Z///
_ e///’ S///7 Z — e/7 S/’ w/7 Z/

—invg(w)’

- O=w, w.
We do case analysis on inv4(w).
1. invg (w). By induction
—eS, % gﬂ e’ g s

We get e, S, X ;’qu/ e’,S’, X’ which is equivalent to the goal with vis-red.
2. —inv4(w). We do another case analysis:
(a) w’ =e¢. In this case & = w, w’. By induction
— e S, L==2,¢e",8" 1"
We get e, S, X gj’[ e’,S’, 2/ by vis-red.
(b) w’ # . By induction

w,w’

_ e7s7z Ae///7s///,Z///.

w,w’,w’

e, S, =4 follows by vis-red.

Lemma 10.11.

If 5 ke S—=*e¢/ S’ then there is a & such that © e, S J—;ﬁkﬂ e/, S

w

Proof. By induction on the derivation of e,S,~ = e’,S’, X’
e single: In this case there is some observation w such that
— W = w and
—eX,S>=¢e' S w,L'. We do case analysis:

1. invg (w). In this case w4 = ¢. We get

T x no-red
ZI—e,S:A e, S e, 2, S¢S w,x’ invg(w) |
= T inv-red
e,S, L=, ¢ S, L
2. —invg(w). In this case w4 = w. We get
T no-red
LheS==,eS e, 2, S=¢' .S w,x’ —inv, (w)
vis-red

w
e, S, =,¢' 5%
— continue: In this case there is an observation w and a trace w’ such that

* = w,w’
x e, L, S=e”,S" w, "

w’
x e S"¥r=¢e S L.

By induction there is a £"’ such that

w’

* e/l’s/l’z ;f‘l/[ eI’SI7Z///.

We do case analysis on inv4(w).

1. invg(w). In that case by [Lemma 10.10| we have e, S, Z %AA e’,S/, L. This is equivalent
to the goal because we have 4 = (w, w') 4 = W’ 4 because invy (w).
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2. —inv4(w). We do another cases analysis
(a) w'4y = e. In this case we get by [Lemma 10.10| that e,S,X =>4 e’,S’,Z”. This is
equivalent to the goal because we have 04 = (w,w')qg = w,w’ 4 = w, € = w because
—invy (w).

’

(b) w’ # e. In this case we get by [Lemma 10.10| that e, S, Z =4 e/,S/, L. This is
equivalent to the goal because we have W4 = (W, w’) s = w, w’ 4 because —invg (w).

O

Lemma 10.12. If e,S,Z = ¢/.S". %’ and e/,S', L % e/, S”, X" then e,S,L "2 e S 5.

w

Proof. By induction on e,S,X = e, S’ L.
e single. In this case
- e S>=¢e S w, X and
- W =w.
w,w’ . .. —
We get e,S,Z "= e”,S”. 2" by continue. This is the goal because & = w.
g y g
e continue. In this case there are e”’, S, £"’ w, w" such that
_ e7 Z’ S >_ e///7 S///7 w’ Z/I/
— e 8" ¥ ﬂ:‘;” e/, S 5’
- O =w,w".
(U‘//

By induction we have e, S L =" " S” £ We get e,S,L =" e”.S” " by continue.
This is equal to the goal.

O
Lemma 10.13. If inv, (w), then (W0, w)g = Wa
Proof. By induction on .
e tr = w’. We do case analysis on invg(w’).
1. invg(w’). In this case (W, w)q = (W', wWlg =wy = =w) = d4.
2. minvy(w’). In this case (0, w)q = (W', wW)g =w',wag =w’ e =w' = w) =y
o tr=w’, w’. We do case analysis on inv (w’).
1. inva(w’). In this case (0, w)a = (W', W/, w)a = (W, Ww)a md 5y = (W', w)q =4
2. —invg(w’). In this case (0, w)q = (W, W, wg = w’, (W, w4 Ind w,wg = (W, w)a =
Wh.
O

Lemma 10.14. Let @ be a trace and w an observation. If —inv4(w), then & = ¢ or (W, w)g = W4, W
Proof. By induction on .
e (O = €. There is nothing to show.

e 0 =w’. We do case analysis on inv4 (w’).

I

1. invg(w’). In this case (0, w)q = (W, wlg =wg =€, w =w/,w = dy4,w.

Twg=w w=wl,w=dgw.

2. —invg4(w’). In this case (0, w)g = (W, W)g = w
e (0 =w’, w'. We do case analysis on inv4(w’).

1. invg(w’). In this case (W, w)q = (w
(DA,(,U.
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2. minv4(w’). Inthis case (0, w)g = (w
LBA,(,U.

@32 %

Lemma 10.15. If > ke, § == e’, S’, then either & = ¢, e’ =e, 2/ =2 and S’ = S, or there are

- wHsr % — —
w’; 2" such that “ e, S=——= e’, S and w’'4 = @.

Proof. By induction on e, S, %~ =54 e, S .
e no-red. In this case & =¢, e’ =e, X' =X and S’ =S.

e inv-red In this case there are e”,S”,Z” w such that

@

- eS,X=,4¢e" 8" 1%
—e” X S"=¢e S w, L

— invg (w).
By induction there are two cases:

1. ®=¢,e”"=¢X' =X and S” = S. In this case it suffices to show
—¢,S,Z=2¢’,S", £”. We get this by single because of the known equalities.
— w4 = &. We have this because invg (w).

2. There are w’, £"" such that

w’

~ e S, LS e”, 8" 1"
- LU/A =

We get e”,S”, £ L ¢/ S". 5" by single. e,S,% “=“ ¢/, S’ £ follows by [Lemma 10.12l All that
remains to be shown is that (w’, w)4 = ©. We get this by |[Lemma 10.13

e vis-red In this case there are e”,S” X" w, w’ such that

W’
—eS,X=,¢e" 8" %",
—e” LS =¢e S w X
— —invy(w).
—w=w/,w
By induction there are two cases:

1. w =¢e”"=e £ =% and $” = S. In this case it suffices to show
—¢,5,Z=¢’,S", L. We get this by single because of the known equalities.
— w,x = w. We have this because —inv4(w).
2. There are w”, X" such that
—e S,z g e” S "
Wiy = @
We get e”,S”, L 2 e/, S', L’ by single. e,S, L w;&w e’,S’, ¥/ follows by [Lemma 10.121

All that remains to be shown is that (w”,w)s = &. By [Lemma 10.14 we get (w”, w)gq =
w’g,w=w’ w=d.

Lemma 10.16. If —inv,(w), then (W, w)4 # ¢
Proof. By induction on .
e () =¢. In this case (0, w)q =wy =w. And w # ¢.

e 0 =w', w’. We do case analysis on invy4 (w’)
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. - Ind.
1. invg(w’). In this case (0, w)s = (W, W, w)g = (W, Ww)a # .

2. —inv (w’). In this case (0, w)a = (W', W/, w)a = w’, (W', w) # €.

O
Definition 10.10. A trace & := wg, wq,...w, is equivalent to a trace W’ = wh,wl, .. wl (written
@ Efw,m) (J/), when we have w; Elem) w! forall 0 <1< n.
Lemma 10.17. If 4 = w’, w, then —inv4(w).
Proof. By induction on .
e 0 =w’. We do case analysis on invg(w’).
1. invg(w’). In this case 4 = w)y = ¢ # W/, w. #
2. minvy(w’). In this case Wy = w) = w’' = w’,w. This can only be the case if w’ = ¢ and

w’ = w. Since ~invy (w’) also —invy (w).
e 0 =w', w”. We do case analysis on inv4(w’).

1. invg(w’). In this case trg = (w’,w") g = w” 4 = w’, w. We get the claim by induction.
2. =invg(w’). In this case try = (W', wW")g = W', w"” 4 = w’,w. We do case analysis on w’.

(a) w’ = ¢. In this case w’,w” 4 = w. This can only be the case if w’ = w and w4 = e.
Since —inv4(w’) we also have —inv, (w).

"

(b) w’ = w”,w”. In this case w’',w” 4 = w”, w”, w. Hence w’ = w” and w” 4 = w”

, .
We get the claim by induction.
O
Lemma 10.18. If (&, w)s = w, then there are w,...,w, such that ©® = wq,...,w, and V1 < i< n,
invg(wi) and pol(w) C A.

Proof. By induction on .
W = ¢. There are two cases:

1. invg(w). In this case (W0, w)g = wy = € £.

2. —(invg (w)). —inv4(w) implies pol(w) C A. In this case 4 = w4 = w’. Hence the claim is true if
we set 1 = 0.

@ = w’,w’. There are two cases:

1. inva(w’). In this case (0, w)a = (w’, w’,w)4q = (W', w)4. By transitivity this gives us (w’, w)q =

w. By induction we get that there are wy, ..., wy, and such that W' =wi,...,wn,wand V1 <i<n,
invg(wyi) and pol(w) C A. Then & = w’, wy,...,w, We already have inv4(w’) so this shows the
goal.

2. —=(inva(w”)). In this case W4 = (W', W, w)q = w’, (W”, w)4. By transitivity w = w’, (W”, w)4.
This can only be the case if w = w’ and (w’, w)4 = €. Because w = w’ and —inv4 (w’) we also have

—inv4 (w). But then by [Lemma 10.16| we have w’, w4 # €. £.

O
Lemma 10.19. If &4 = w,w’, then & = wq,...,wn,w,w” and w” 4 = w’ and V1 <1 < ninvg(wy)
and —invy (w).
Proof. By induction in @.
e (U = ¢. In this case W4 is not even defined. So W4 = w, w’ cannot be the case. £.
e 0 =w', w”. We do case analysis on inv4(w’).
1. invy(w’). In this case w4 = (w',w”)y = by = w,w’. Hence by induction there are
W1i,...,Wn and w’” such that
— W =wiy. .., Wn,w,w"”
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- LU”’A =w’
— VI <i<ninvg(wi)
— —invy (w)
We get the goal because also inv.4(w’).
2. —inv4(w’). In this case (UA = (w w4 =w’, w”,. Hence w’,w” = w, w’. This can only be
the case of w’ = w and w” 4 = w’. So we have the goal with n = 0.

O

Lemma 10.20. If Z - e, S SRR , S, there are e”,S”,2" such that e, S =—— BN e”, S§" and

Shel, s K o g,

Proof. By induction on .

e (0 = w. In this case we get the claim by the definition of e, S, L “ e ,S1, 2.
e (0 = w,w”. Then by definition of e, S, £ o Lo e’,S’, 2’ there are e”’,S"", L' such that
— e, S, L= e, 8" 1" and
/// S/// i wzgc / S/ /.
By induction we have e, S”,~" such that
e S/// pI=N w’ e S// S and
)
— e’ 8" L= S ,S’, 2’ which is part of our goal.
By definition we get e, S, L “ w e’ S” X" which is all that remains to be shown.
O
Lemma 10.21. If (0, w)s = w’, w, then @ =¢ or Wy = w'.
Proof. By |Lemma 10.17| we have —inv4(w). Hence by [Lemma 10.14| we get two cases:
e (0 = ¢. This proves the goal.
o (W, w)q = Wa,w. In this case W4, w = w’, w. This can only be the case if W4 = w’
O

Lemma 10.22. 1. If w E[Aw,m] w’” and W/ I W and m’ < m, then w N[AW, 2 w’.

2. If & =y ) w’ and W/ D W and m’ < m, then @ = m) w’.

Proof. 1. By cases analysis on the derivation of w E(vam] w’. For refl and high we get the claim by
the same rule. For extend-t w and w’ have the form 1(v) and 1% (v’), respectively. By inversion we
get

e (LU)eW.,
We get the claim by extend-T if we can show
o (v,v, W' m/) € [T]5. We get this by [Lemma 8.25[ and [Lemma 8.24]
e (1,1/) € W.B. This follows directly from W’ D W.
2. We get this by pointwise application of 1. to each pair of observations in the traces.
O
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W,w1;5] % Wa,wo; Xl %

Lemma 10.23. If (el,eg,W,Zy,Zg,m) S H—T—”‘é, >k e, Sl 6{, S{, ’o bk €9, 52

- - - - A
eé,Sé, (U;,(D[ :((Jhwl)./h wéaw‘Z:(uyh(UZ)fh (U'{ %\Eqw’mfl) w'ﬁ)a (517323m_1)l>w7m>1en(u71)+
len(ws)+2and 2| £ A or X} C A, then there is a W’ 3 W such that wﬂ{,wl Efwgm%en(@)flen( )—1)

1
Wo, Wo.

Proof. By induction on w].

. 41 = ¢. In this case because W/ %{LW,m—l) w/, we have w/ = ¢ as well. Hence (W, w1), = w; and
(W, wa) 4 = ws. Bythis means that there are w{,...w}, and w{,..., w/, such that
- W = wi,...wh
- wh=wl,...w/,
— VI <i<ninvg(w))
- Vi<ig<ninvg(w!)
— pol(w;) EA
— pol{wz) EA

Clearly also len(w;) =n and len(wsy) = n’ and hence
—m>2n+n’+2

Hence

’

Wi W01 o) oy
- 61,51721 = €, 1,):1

" "
15y, W2

w
- 62782722 eéﬁsé’zé
By |Lemma 10.9| we get that there is a W’ 3 W such that wq g(AW',m—n—n/—l) ws. This is the goal
since w| = ¢ = w).
e w| =w],w/. Then because of w/ %{IW me1) w/, we must have that there are w} and w/ such that

R ) A / LA N
W) = wy, ) and wy Ry gy Wi. Then also wi =, ;) w’. Hence

— (W, w)u =wi,w!, wy

- ( H'_);w2)ﬂ = wéawg,w2

w
Hence by [Lemma 10.21| we have one of two cases:
— w; = € or wy, = e. This would mean that (W), wi)a = (wi)y, = w1 = wi,w/,w;. or
(Ws, wa)a = (w2)a = we = wh, W/ ws. This is clearly impossible.

— iy N BN
— w4 =wi,w and Whg = wsy, wl.

Bywe get that there are @y, ..., Wy, u;{, e w:’l,,(f) and w’ such that

*

*

*

u;/‘,q = wz/
—inv4(w]) and hence pol(w;) C A

V1l <i<ninvg (i)

*
* 1
* —invyg (w)) and hence pol(w)) C A
*
* V1 <i<n invg(w!)

Hence we have

Wy, W W1L,O,W1 ) )
* e1,51,21 e}, 51, %)
Wl wh 0w Wy
* €2,S2, Lo = e, Sh 25



x m=n+1+ len(w )+n’+1+1en(u;/) +2
By [Lemma 10.20| we have e, S{/,Z{ and e, S%, L4 such that

Wy,yeen,Wn, W1 ,/

* 61,51,21 = ZH
«el,Sy, 5y 7 el 8], 51,
* 62752,22 o -7;;;” ? H Z
* eélv Z2 w2 év é?zé

By [Cemma 10.9| there is are W/ J W and m’ =m —n —n’ — 1 such that
x (el ed W L1, T5,m/) € [T]¢
« (S7,8,m") B W’
* W] Ry oy W
* m’ > len(®)+ 1+ len((;/) +2.

By induction we get that there is an W” 3 W’ such that w/, w; =4 D o
(W"” m’—len(®)—len(w’)—1)

W/, we, if we can show
x (ef e , W' L1,Zom/) € [T]¢. We already know this.
@ w1

x e], ST,y er,S1,X1. We already know this.

x ey, S5, o Yo e}, S5, 25 We already know this.
* wﬂf’,wl = (0, wq)4. By|Lemma 10.17| we have —inv4(w;). Hence by [Lemma 10.14{ there
are two cases:

. = ¢. This is impossible because W4 = LJ{’ which means in particular that @4 is
defined. But ¢4 is undefined. ¢

- (D, w1)4 = D4, w;. This shows the goal because @4 = (J{’.
* LUZ/,(,UQ = (w’,ws)4. By[Lemma 10.17| we have —inv4(w,). Hence by [Lemma 10.14| there
are two cases:

. u; = ¢. This is impossible because w’, = w / which means in particular that w’, is
defined. But ¢ A is undefined. ¢

. (w W2)4 = w4, ws. This shows the goal because w’' 4 = w?.

x w/ s mi_1) w/. We get this by |Lemma 10.8
x (S7,8,m"—1) SW. We get this by [Lemma 10.7l

* m’ > len(w) + len(w ) 4+ 2. This follows from m’ > len(®) + 1+ len(cj/) +2.
x X1 C A or Z) C A. We already know this.

A

N
, . , - wy, w4, wy. To show
(W m—(n+1+len(®))—(n'+1+len(w’))—1)

It suffices to show wi, w!, w; =

this it suffices to show

* wi =t _ - wh. We get this by [Lemma 10.22| because
(W7 m—(n+1+len(w))—(n/+1+len(w’))—1)
m’ =m-—-n—n'—1

* (,Ul , W1 A _ -
W m—(n+l+len(w))—(m/+1+len(w’))—1)
ing the definition of m'.

wqé’, wsy. We get this by |[Lemma 10.22| us-

Definition 10.11 (Low states). A state L is called A-low if L4 = L.

Definition 10.12. For a state environment 8 and state S we define a state environment 85 : dom(6) U
dom(S) — Type.

05(1) = o(1) if 1 € dom(0)
type(S,1) otherwise
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Definition 10.13 (Knowledge). The knowledge of attacker A after observing expression e produce trace
w in A-low state L and lock set > with locations in 0 is defined in the following way:

kale; ;L 5) = {s ‘ S~aLAZke S :*;;l e’, S A IW 2 (05,05, idgom(1)) VM. &y 1) w’/}
This definition is slightly different from the definition of knowledge in [4] because we have to take care

of the non-deterministic choice of locations. We define runs similarly to [4].

Definition 10.14 (Runs). An A-observable run is defined in the following way:
Runae,L,7,0) = { (@, ‘35 S Sp 0L AS A LAT Fe, S 258 ol 5]

Lemma 10.24. If vB~% v/ then also v/ P ~% v and if vP~4% v/, then also v/ P~ _A V.
Proof. By mutual induction on T and A.
e T = AP: There derivation could have happened with one of these two rules:

1. eqHigh. In this case p Z A. We get v/ P~ Ap v by eqHigh.
2. eqLow. In thiscasep C A and v B:A vy BT :A v by induction. We get the claim by eqLow.

e A =unit: In this case v P~/ . v/ must have been derived by eqUnit. By inversion we get v = () =v'.

We get the claim by eqUnit.

e A =N. In this case v Bf:{}f v/ must have been derived by eqNat. By inversion we get v =n =v’.
We get the claim by eqNat.

e A =T + T2. In this case there are two rules with which vP~f v’ could have been derived:

1. eqInl: In this case there are vg,v( such that
— v=1nl vy,
— v/ =inl v} and
- Vo Bzfl v},

B _T vo by induction. The claim follows by eqInl.

2. qunr. Analogous to the previous case.

e A =1 XT,. In this case v P~ v/ must have been derived by eqPair. Hence there are vi,va,vi, V)

such that

T T1 XT2

- V= (V17V2

),
-V _(V{a é)a

~ vy B
Hence by induction
— v P2 v; and

— B~
V2 _T2 \)2.

We get (vi,v4) B4 o (v{,v4) by eqPair.

e A = ref 7. In this case vP~ f v/ must have been derived by eqRef. By inversion there are 1,1’
such that

- v=l,
V=V
— (L) € B and

We have to show 1/ B~ . By eqRef it suffice to show (1/,1) € L. This is clearly the case.

ref T

O
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Lemma 10.25. If (v,v/,(0,0’,8), m) € [t]4 and firstorder(t), then (v/,v,(8’,0, 1), m) € [1]+.

Proof. By [Lemma 8.44 we have vB~A v/ By [Lemma 10.24] we have v/ P ' ~% v. We also have (v,0,m) €
[t]v and (v/,0’,m) € [T]y by|Lemma 8.22} Hence by [Lemma 8.43we get (v/,v,(0/,0,37!),m) € [t]#. O

Lemma 10.26. If vP~" v/ and v/ '~ v/ then vB P~ v/ and if vP~t v/ and v/ B'~% v/ then
B'oB ~LA
VBB Y1

Proof. By mutual induction on T and A.
e T = AP: There derivation could have happened with one of these two rules:

1. eqHigh. In this case p £ A. We get v Bloﬁzf\lp v by eqHigh.
A

2. eqLow. In this case p C A and vP~% v/. We do inversion on v/ B'~%, v". Because p C A the
only applicable rule is eqLow. Hence v/ P'~4 v"". We get vF'°P~2 v/ by induction. We get
the claim by eqLow.

e A =unit. In this case both vP~% . v/ and v/ B'~% . " must have been derived by eqUnit. By
inversion we get v=v' =v” = (). We get the claim by eqUnit.

e A =N. In this case both vP~% v/ and v/ '~£ v must have been derived by eqNat. By inversion
we get v=v' =v” =n. We get the claim by eqNat.

e A =Ty + To. In this case there are two rules with which v B:ﬁ v’ could have been derived:

1. eqInl: In this case there are vg, v such that

— v=1inl vg,

— v/ =inl v} and
~AA /

— vo Pt vy

We do inversion on inl v P’ v”. The only applicable rule is eqInl. Hence there is also a

v{ such that

~AA
—T1+7T>

— v’ =1inl v} and

- v} B':fl vyl
We get v Bloﬁzfl vy by induction. The claim follows by eqInl.

2. eqlnr: Analogous to the previous case.

e A =1 x To. In this case both vF~4 v and v/ P'~4 " must have been derived by eqPair.

Hence there are vi,va,vi,v5,v{',v) such that

— v =(v1,Vva),
— /

— v = (v],v3),
" __ / li

= Vv = (v1,v3),

~ oy, P

~ v BA

’
— B A
Hence by induction
’
— vy PoBf v and

"oB LA NN
— vy BB Y

We get (vy,vq) PoP~A (vi,vY) by eqPair.

TT1 X Ty

e A =ref 7. In this case both vB~A v/ and v/ P'~A . v" must have been derived by eqRef. By

inversion there are 1,1’,1” such that

- v=l,

— v =1
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=1
— (LL') € B and
— (1) e B,
We have to show 1B °B~A . 17 By eqRef it suffice to show (1,1”) € B’ o . This is clearly the case.
]

Lemma 10.27. If firstorder(t), (v,v',(0,0’,8),m) € [t]5 and (v/,v"”,(8”,0"”,8"),m) € [t]+, then
(V,V”, (eaema B/ © B)am) € WT]]‘G

Proof. By [Lemma 8.44] we have v P~ v/ and v/ P'~% v Hence by [Lemma 10.26|v " °B~4 v We also
have (v,0,m) € [ty and (v"/,0", m) € [t]y by [Lemma 8.22| Hence (v,v”,(6,0”,8’ o ), m) € [t]{ by
[Cemma 8.3 O

Lemma 10.28. If we consider only firstorder observations. Then
A A
L Ifw ={ge8)m) w’, then w’ {i0r.0.p-1)m) V-

A = T A
((0.07,p),m) W5 then W' g, g 1) 1y -

2. If @

1%

)w’.

Proof. 1. We do case analysis on the derivation of w gﬂe,e',ﬁ),m

(a) refl: In this case w = w’ and w or w’ do not have the form 1(v). We get the goal by refl.

(b) extend-t: In this case

o w=1(v),
o w' =1.(v'),
o (L,U) € B, and

(v,v',(0,0",B), m) € [T]+.
By extend-T it suffices to show
e (1',1) € B~ L. This follows directly from (1,1’) € B.
e (V,v,(0,0,71),m) € [t]5. We get this by because T is firstorder by

assumption.
(c¢) high:In this case by inversion
e pol(w) Z A.
e pol(w’) Z A.
The claim follows by high.

2. By induction on the length n of @.

Base case: n = 0. In this case there is nothing to show. Induction case: n > 0. In this case
W = wy, Wy for some observation w and trace wi,. Because &“g w’ we know that there are w’

and w/, such that w’ = w’, w], and w &é‘ w’ and wiy &E{ wy,. To show the goal it suffices to show

o w’ &g,l w. We get this by 1.

. uf{{ gé 1 Wi. We get this by induction.

Lemma 10.29. If we consider only firstorder observations, then

~A / / ~A 1" ~A 12
Lo IEw =g 0/, p)m) @ and W' g g gy my @ then & &g g grog) m) V-

DA ’ ) oA y s oA y
2. If @ Xi0.07.8),m) w’ and w’ Xlior0m.p7) w’, then @ (0,0 ,p’0p),m) w’.

ym)

/

Proof. 1. We do case analysis on the derivation of w &ﬂae“m, w'’.

m)

(a) refl: In this case w = w’ and w or w’ do not have the form 1,(v) or l¢(v). Hence they must
have one of the following forms:
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i. open(o).

In this case we have to show open(o) &{te 0/ BroB).m) w’”. We already know

o open(o) E{ign gm prym) O

This could only have been derived using refl or high. In both cases we can derived the goal
with the same rule.
ii. close(o). Analogous to the previous case.
iii. unopen(o). Analogous to the previous cases.
iv. unclose(o). Analogous to the previous cases.
(b) extend-T: In this case
o w=1(v),
.« W =),
e (L) € B, and
e (v,v',(0,0",8),m) e [t]¢
We do case analysis on the derivation of 12(v') Eﬁe”,e”',s'),m) w?”.

i. refl: This rule is not applicable because 1.(v’) violates a premiss of the rule.
ii. extend-T: In this case there are 1” and v” such that
e w' = L/r/(\)//),
e (U',1”") € p’, and
° (V’,V”,(@N,em,ﬁ/) E H—T-Hé
We have to show 1(v) = [((9 0/ Brop), l”( ). By extend-T it suffices to show
e (L,1”) € B’ o B. This is the case because (LV)ePand (1,1") € B
o (v,v" (0,0”,B"0B),m) € [t]5. We get this bybecause by assumption
firstorder(t).
iii. high: In this case by inversion
e pol(t) =pol(lL(v)) Z A.
e pol(w”) Z A.
We get the goal by high.
(c¢) high:In this case by inversion
e pol(w) Z A.
e pol(w’) Z A.
We do case analysis on the derivation of w’ E{te”,ﬁ’”,ﬁ’),m) w’”.

i. refl. In this case w” = w’. In particular pol(w”) Z A. We get the goal by high.
ii. extend-t. By inversion there are 1’,1”,T,v’,v” such that
e w' =1.(v') and
e w' = L/r/(\)//).
Because pol(w’) = pol(t) we have T [Z A. Hence we get the goal by high.
iii. high: In this case by inversion also
e pol(w”) L A.
We get the goal by high.

2. By induction on the length n of @.

Base case: 1 = 0. In this case there is nothing to show.

Induction case: n> 0. In this case @ = wo, Wty for some observatlon w. and trace w;,. Because
.| _ A /
© X((9.0/.8).m) w’ we know that there are w’ and ‘Uu such that w’ = w’ w [ and w = Mo.07.6).m) w

and Wy Nﬁe 0/.p).m ) ‘Uu By the same reasoning we get that there are w’ and (U{/L such that
W’ = w” ” and w’ ﬁe”,e'”,ﬁ'),m) w” and LU?L Eﬁe”,e”',ﬁ'),m) w/|. To show the goal it suffices
to show
A .
® W ({5 omprop)m) @ We get this by 1.
* Wi Zf(l( 0.0 B’oB),m) UZ/L. We get this by induction.
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]
Lemma 10.30. If we only consider firstorder observations and Vm, & &flwm) w’and W D (01,01, idgom(L)),
then ka(e; ; L; 2) =ku(e; w/; L; 2).
Proof. C: Let S € ku(e, @, L, X). Then there are e/,S’,Z’, w” and W’ such that

.Szﬂ[‘,

0 ¢S, 5 =2 e85
o« W . (657657idd0m(L))
w”.

e VYm, &fw,)m)

W has the form (0,0’,3) and W' has the form (6”,0"", ')
It suffice to show

e S~y L. We already know that.

e ¢S, =%, ¢S 5 We already know that.
e (07,0”,p' 0B ') I (0r,01,1dgom(r)). This involves showing:

— 0/ 3 01. We already know this.
— 0" 30L. We already know this.

— B’oB ! Didgomr) Let (1,1) € idgom(r). Then because p 2 idgom(r) and B’ 2 idgom (L) We
have

« (LY ep
« (LY ep’
Hence also (1,1) € B! and therefore (1,1) € B’ o pL.

e Vm, w’ &“%, 0/ B/0B—1)m w”. Let m € N. By [Lemma 10.28| we have w’ Eﬁe',e,ﬁfl),m] . By
emma 10.29

this gives us the goal.
D: Let S € ka(e,w’,L,L). Then there are e’,S’, %, w” and W’ such that

e S~ , L,
¢S 5=5,e 81
e W/ 3 (0,0r,idaom(r))
o Vm,w’ &{‘W,m) w”.
W has the form (0,0, 3) and W’ has the form (6”,0", ). It suffice to show

e S~y L. We already know that.

e ¢S X g;{ e’,S’, L', We already know that.

e (0,0”,p" 0pB) 3 (0s,0s,idgom(r))- This involves showing:
— 0 3 0r. We already know this.
— 0" 30L. We already know this.

— B oB Didgom(r)- Let (L,1) € idgom(r)- Then because B D idgom(r) and B’ D idgom(r) we
have

* (L) ep
« (L) ep’
Hence also (1,1) € ' o B.

o VYm,d gﬂe,e”’,ﬁ’oﬁ),m] w”. We get this by [Lemma 10.29
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U
Lemma 10.31 (Low equivalence symmetric). If S;S’ are firstorder states and S ~4 S’, then S’ ~4 S.
Proof. Let S, S’ such that S &4 S’. Then in particular

L] dom(SA) = dom(S’A)

A .
L4 Vm.(SA, S/A»m) > (GSAaeS’Aalddom(Sﬂ))'
‘We have to show

1. dom(S’4) = dom(S,4). We get this by symmetry of equality.

2. Vm.(S'4,S4,m) lf; (0s7,,0s,,1dgom(s’ ,))- Let m € N. We specialize our second assumption with m.
By unfolding the definition (and using the fact that two location in the identity relatio are identical),
this gives us

e (Sq,m)>0s,

L4 (S/fbm) Deslﬂ

® iddom(s,) S Os, X Osy.

e Y(1,1) € idaom(s )05, =05, A (Sa(l),8 a(l), (65,05, ,iddom(s,)), M) € [0s, (V4
We need to show the following:

(a) (S',m)>0s/,. We already know this.
(b) (S,m)>0s,. We already know this.
(c) iddom(s,) € Osr, x Os,,. Let (1,1) € idgom(s’ ,)- Since dom(S4) = dom(S’4), this mean
o (L,1) € iddom(s)-
From idgom(s,) € 0s, x 05/, we can further deduce
e (L1) €0Bs, x0Os/,.
Hence in particular
e l€0s, and
e lc GS’A~
(L,1) € 05+, x Bs,,, which is what we need to show here, follows directly from these two facts.
(d) V(L) € iddom(s’ 4)-0s7 4 = 0s, A (S’a(1),Sa(l), (0s7,,0s,,iddom(s’ ,))s ™) € [0s/, (V)] Let
(L1) € idgom(s’ ,)- Then because dom(S’4) = dom(S4), we also have
o (L,1) € iddom(s4)-
This gives us
e Os, =05/, and
e (Sa(l),8"4(1), (05,05, ,iddom(s ), M) € [0s, (V5.
We have to show
i. 0s/, =0s,. We get this by symmetry of equality.
i (S'4(1),S4(1), (0s/,,0s,,iddom(s ), m) € [0s, (V]5. From (Sa,m)>0s,, we get that
e 05, (1) = type(Sa, ).
Because S and therefore also S 4 is firstorder, this means
o firstorder(0s, (1))
This allows us to use to get
o (S'a(1),Sa(l), (05,05, id5, s )im) € [0s, (V]
But since the inverse of the identity relation is the identity relation and because dom(S,4) =
dom(S’4), this gives us
o (S'a(1),S4(1),(0s/,,0s,,iddom(s ), m) € [6s, (VT3
The goal follows from 65, = 0s/ .
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Lemma 10.32 (Low equivalence transitive).
1. If S,S’,S" are firstorder states and S ~4 S’ and S’ ~4 S”, then S ~4 S”.
2. L~y 2 and X/ ~y4 2", then X ~4 2.
Proof. 1. Because of S ~4 S’ and S’ ~4 S” we have
e dom(S4) = dom(S’4) = dom(S"4).

A

o Vm. (Sa,S"a, m) > (05,05, idagms ) )-
A

o VYm. (S'4,8"4,m) > (05745057 4 idggm s, )

We have to show:
e dom(S,4) = dom(S” 4). We already know this.

A .
e Ym.(S,S”,m)> (0s,,0s . Let m € N. By insantiating our assumptions with m and

.Aaiddom(SA))
unfolding the definition of é, we get:
— dom(0s,) € dom(S4).
— dom(0s/,) C dom(S’4).
— V1l € dom(6s,). 0s, (1) =type(Sa,1).
—Vle dom(esxﬂ). Os/, (1) = type(S’4,1).
- iddom(SA) - dOm(esﬁ) X dOm(es/A).
— ¥(L1,12) € idaom(s,)-05, (L) = 057, (12)A(SA(L1), S a(L2), (05,45 0574 idagms ) )s ™) € [0s, (L)
— dom(0s~,) C dom(S" 4).
—Vle dom(eswﬂ). Osr , (1) = type(S”4,1).
- iddom(S/A] - dom(egfﬁ) X dOm(es//A).
= VI, l2) € tdaom(s )05/, (W) = 05, (L) A (S7a(l1),5"a(l2), (Bs/,, 057, iy s, ) M) €
05, (L)
From this we have to show:
— dom(0s,) € dom(S4). We already know this.
— dom(0s+,) C dom(S” 4). We already know this.
— V1l € dom(0s,). 05, (1) = type(Sa,l). We already know this.
— Vledom(0sr,). 05, (1) = type(S”4,1). We already know this.
— idgom(s ) € dom(6s,) x dom(0s~,). Let (1,1) € idgom(s,)- Then, because we know by
assumption that idgom(s,) € dom(0s,) x dom(0s, ), we have
* 1 € dom(0s,)
* 1€ dom(6s/,)
Because dom(8s/,) C dom(S’4), we also have
* (l, U S iddom(S/A)~
From idgom(s/,) € dom(0s/,) x dom(0s~, ) we can further deduce that
* L€ dom(Gg//A).
Since both 1 € dom(0s,) and 1 € dom(0s~,) we have
x (1,1) € dom(0s,) x dom(0s~ ).
This is what we needed to show.
— V(li,12) € idaom(sa)-Os, (L) = Osr, (12) A (Sall1), S”a(l2), (05,057, iduoms )™ €

H—GSAUI)—[H?L
Let (11,15) € i-ddom(SA)- Then

* 11 = 12
by the definition of the identity relation. We have to show
(a) Bs,(l1) = Bsr,(l2). Since 13 = 1y, this is equivalent to showing 0s,(11) = 0s~, (11).
Since (11, 11) € idgom(s ), we have that
* 0s, (L) =0s/, (L1)
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from one of our assumptions. Because dom(S4) = dom(S’,4) and 1; € dom(S4), we also
have

x 11 € dom(S’4).

This also gives us

* (117 ll) € iddOIIl(S/A)'

Hence, we also get from one of our assumptions that

* 05/, (L) = 05, (L).

0s, (11) =05, (11) follows by transitivity. This is what we needed to show.

(b) (SA(I,l),S”A(I,Q),(esﬂ,esﬂﬂyiddom(sﬁ)),m) € [0s,(L)]4. Because l; = ly it suffices
to show (Sa(l1),S"”a(l1), (s, ,0s~
sumptions we get
* (Sa(l),$"a(l), (05,057 4 tdyoms ) ) M) € [0s, (L)]5-

In the previous case we have already shown that

* (L, 11) € iddom(s,)-

Hence we also get

* (S/A(11)7 SH.A(11J7 (GS'A ) eS”_A7idd0m(s/A) )7 m) € H—GS'A (11)—”{7l

Since (11, 11) € idgom(s,), we also know

* 05, (L) = 0s/,(L1).

Using this equation we get

* (STa(l),8"a(l1), (05,057, iy s, ) M) € [6s, (L)%

Because we know by assumption that idgoms ) € dom(0s, ) x dom(0s/,, ), we also know
* 1; € dom(0s, ).

Because V1 € dom(6s, ). 05, (1) = type(S4,1), this gives us

* 0s, (L) = type(Sa, l1).

Because by assumption S is a firstorder state and V1 € dom(S4). type(Sa, 1) = type(S, 1),
we have

Aviddom(sA))’m) € [0s, (11)]]{}. From one of our as-

x firstorder(type(Sa,l1)).

and therefore, exploting the equality from before, also

* 0s, (11).

Hence we can use to get

* (Sa(l1),8”a(l1), (05,057, ,iddom(s ) © tddom(s)), M) € [0s,, (L)T5.

This is equivalent to the remaining subgoal because id(dom(S’4)) o id(dom(Sy,)) =
id(dom(S4)) due to dom(S4) = dom(S’4).

O

@,w;x % W/ w;r’ %k

Lemma 10.33. If Z e, S === ¢’, S’ there are ¢”,S", @’ such that > -, S e’ S” and

W, w=(w/,w)g.
. . @,w
Proof. By induction on e,S, X =>4 e’,S’, X',

e no-red. In this case we would have @, w = ¢. This is obviously impossible. £.

e inv-red. In this case there are ¢”,S” such that
— e S, L= ¢e" 8" 5
By induction there are e”,S” such that e,S,Z "= e”.$”. I/ and @, w = W’ w4.
e vis-red. In this case there are e”’,S”, X" such that

~ e8I =2y,¢",5",5"
~ " L,8" ¢S\ w,I

— —invy (w)

By |Lemma 10.15( we get two cases:
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1. —e’"=e

- S"=5
-y =x
— W=c¢

Hence we already have e, £,S > e/,S’, w,L’. We get e,S,Z = e’,S’, L’ by single. This suffices
if O, w=w = w4 This is the case because —inv 4 (w).

2. There are £, w’ such that

w’
— e,$, % e”, 8" £ and

— W'y = .
By single we get e”,S”. L = e’,S’,%’. Hence we get e, S, X R e’,S’ X' by [Lemma 10.12
This suffices because by [Lemma 10.14] we have (W', w)g = w’4, w @Az , w.

O
Lemma 10.34. If S». 8% and L is low and S ~4 L, then 8% 2 0;.

Proof. Let 1 € dom(01). By definition 1 € dom(L). Hence also 1 € dom(0"). Then by S . 8- we have
05 (1) = type(S,1).

Since L is low, L = L4. Hence 1 € dom((4L)) Since S ~4 L, this means that 0y (1) = type((4L),1) =
type(L, 1).

Since S =4 L, also dom((,4S)) = dom((4L)) = dom(L). Since 1 € dom(L) therefore in particular
1 € dom((,4S)). Hence also (1,1) € id(dom(0s,)). Therefore by S ~4 L we have type(S,1) = 0s,(l) =
01, (1) =01 (1) = type(L,1). Hence 0y (1) = type(L,1) = type(S,1) = 6-(1). O

Lemma 10.35. 1. If firstorder(t) and (v,0, m) € [t]y, then Vn. (v,0,n) € [1]y.
2. If firstorder(A) and (v,0,m) € [Aly, then Yn. (v,0,n) € [A]v.
Proof. By mutual induction on firstorder(t) and firstorder(A).

1. Let n € N. We have to show (v,0,n) € [T]|y. T has the form AP and firstorder(t) must have been
derived by FPol. Hence by inversion

e firstorder(A)
and by definition of [AP]y
o (v,0,m) € [Aly.
By definition of [AP]y it suffices to show (v,0,n) € [A]y. We get this by induction.
2. Let n € N. We have to show (v,0,n) € [A]y. We do case analysis on the derivation of firstorder(A).
(a) Funit: In this case A = unit. By definition of [unit]y we know that v = (). Hence we have to

show ((),0,n) € [unit]y. We get this by definition of [unit]y.

(b) Fnat: In this case A = N. By definition of [Ny we know that there is an n’ such that v =mn’
and n’ € N. Hence we have to show (n’,0,n) € [N]y. We get this by definition of [N]y because
n’ eN.

(¢) FProd: In this case there are t; and T, such that

e A =T X To.
e firstorder(t;)
e firstorder(ts)

By definition of [T; X T2 ]y we know that there are vy, vy such that
o v = (v, Va),
e (v,0,m) € [11]v, and
e (vo,0,m) € [To]v.

By definition of [Ty X T2 ]y it suffices to show

e (v1,0,1n) € [t;]v. We get this by induction.
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e (vo,0,1) € [15]v. We get this by induction.
(d) FSum: In this case there are 7; and T, such that
o A =1+ To.
e firstorder(ty)
e firstorder(t:)
By definition of [T; 4+ T2y there are two cases
i. There is a v’ such that
e v=inl(v/) and
e (V,0,m) € [1]v.
By definition of [t; 4+ 5]y it suffices to show
e (v,0,n) € [11]v. We get this by induction.
ii. There is a v’ such that
e v=inr(v') and
e (V,0,m) e ’VTQ—IV.
By definition of [t; 4+ 5]y it suffices to show
e (v/,0,n) € [12]v. We get this by induction.
(e) FRef: In this case there is T, such that
e A =ref T and
e firstorder(t).
By definition of [ref T]y there is an 1 such that
e v=1and
e O()=r.
By definition of [ref T]vy it suffices to show 6(1) = T, which we already know.

Lemma 10.36. 1. If firstorder(t) and (v,v/,W,m) € [1]4, then Vn. (v,v/, W, n) € [t]4.
2. If firstorder(A) and (v,v/, W, m) € [A]4, then Vn. (v,v/,W,n) € [A]4.
Proof. By mutual induction on firstorder(t) and firstorder(A).
1. Let n € N. We have to show (v,v/,W,n) € [t]{. T has the form AP and firstorder(t) must have
been derived by FPol. Hence by inversion
e firstorder(A).
There are two cases:

(a) p C A: In this case by definition of [AP]4 we have
e (v,v,W,m) e [A]4
and it suffices to show (v,v/,W,n) € [A]$. We get this by induction.
(b) p IZ A: In this case by definition of [AP]5} we have
o (vW.0;,m) € [A]y and
[ (v’,W.Sg,m) S |—A—|v
and it suffices to show (v, W.01,n) € [A]y and (v, W.02,n) € [A]y. We get both by|Lemma 10.35
2. Let n € N. We have to show (v,v/,W,n) € [A]{. We do case analysis on the derivation of
firstorder(A).
(a) Funit: In this case A = unit. By definition of [unit]s we know that v = () =v’. Hence we have
to show ((), (), W,n) € [unit]s. We get this by definition of [unit]s.
(b) Fnat: In this case A = N. By definition of [N]#f we know that there is an n’ such that
v=n’=v’and n’ € N. Hence we have to show (n’,n’, W ,n) € [N]y. We get this by definition
of [N]4 because n’ € N.
(c) FProd: In this case there are T; and T, such that
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e A =T X To.
e firstorder(ty)
e firstorder(t:)
By definition of [1; x 725 we know that there are vi,vs,v{, v} such that
e v = (v, Va),
o V' = (vi,v3),
(vi,v{,W,m) € [1,]%, and
(va,v5, W, m) € [ ]5.

By definition of [1; x T2]% it suffices to show
e (vi,v{,W,n) € [11]5. We get this by induction.
o (vo,v5,W,n) € [1.]5. We get this by induction.
item FSum: In this case there are t; and 75 such that
o A =1+ To.
e firstorder(ty)
e firstorder(ts)
By definition of [t; + Tz'ﬂ{} there are two cases
i. There are vg,v{ such that
e v=inl(vg),
e v/ =inl(v{}), and
e (vo,vh,W,m) € [t ]5.
By definition of [t + Tgﬂ{} it suffices to show
e (vo, vy, W,n) € [1:]5. We get this by induction.
ii. There are vg,V{, such that
e v=inr(vp),
e v/ =inr(v{), and
e (vo,vh,W,m) € [.]5.
By definition of [t; + T[ﬂ{} it suffices to show
e (vo, vy, W,n) € [12]5. We get this by induction.
(d) FRef: In this case there is T, such that
e A =ref T and
e firstorder(T).

By definition of [ref T4 there are 1,1’ such that

o v=1,

° v/ :]’/7

e W.0,(l) =1=W.0,(l"), and
o (LU) e W.B.

By definition of [ref T]+ it suffices to show W.0;(1) = T = W.05(1’) and (1,1') € W.j3, both of
which we already know.

O

~A

Lemma 10.37. 1. If w and w’ are firstorder observations and w ~wom) !

w’, then ¥n. w &4 w’.

womn)

—

2. If @ and w’ contain only firstorder observations and E{LW m) W', then Vn. E(AW ny @

Proof. 1. Let n € N. We have to show w &{lw n) w’. We do case analysis on the derivation of

A /
(W,m) @ -

12

w
(a) refl: We get the goal by refl.

(b) high: We get the goal by high.

(¢) extend-t: In this case there are 1,1',v, v’ such that

o w=1.v) and
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e w =1.(v)
o (LU)eW.B
e (v,v,W,m) e [t]4.
By extend-T it suffices to show
o (L") € W.B. We already know this.
e (v,v/,W,n) € [1]4. By assumption firstorder(w) and because w = L.(v) this gives us
— firstorder(7)
by inversion. We get the goal by

2. We get this by pointwise application of 1. to each pair of observations in the traces.
O

Theorem 10.1 (Semantic typing implies ﬂow—lock security) Let e be in the language with just firstorder
state. If Ym, (e, e, (8", 0%, idgom(er)), =, 2, m) € [[Tﬂ and (@, w;~’) € Rung(e,L,2,0) and (w/,w’;2") €
Runy(e,L,2,0) and Vm, © %(/te,e o 0)).m) w’  and ¥/ C A or ./ C A, then kq(e; @, w; L; 1) =
kale; w/,w’; L; 2).

Proof. By|Lemma 10.30|it suffices to show that there isa W’,s.t. W’ D (01, 01,1dgom (1)) and Vm, @, w E(,qv,ym
Lemma 10.37

w’,w’. By the step-indexes are irrelevant in the first-order when we just have firstorder ob-
servations and it therefore suffices to show there is a W’ D (01,01,1dqom (1)) such that @, w &(,\l/,,o w’, w’.

Because (@0, w;~') € Runy(e,L,2,0) and (w’,w’; ") € Runy(e, L, 2,0) there are S1,S!,e1,S2,S5, es
such that

° Sl D>. GL
° 52 D>. GL

.Slzﬂl—

SQWAL

W,w; X %

o I ke, 51:—_~>Ae1,51

w’ w5 ok

[ ZFe,SQ.—:=>AeQ,S§

So by [Lemma 10.33| there are 0, e}, S/ and w’, e}, S5 such that

D,w;X’ *k

o S he S el Sy

w <U/;Z” *

e IkFe Sy e}, SV

Let 1; be the length of 4 and let 1y be the length of w’4. Because (0%, 0%, idyom (or)) 2 (0,0,1dgom(e))
we get by monotonicity (10.8]) that & ~

w/

((eL OL,id oLy ) litla+1))

We show (S1,S2, L1 + o+ 1) > (OL 0L, id(dom(0"))). For this we have to show the following:
e id(dom(0")) C dom(8%) x dom(0"). This is obviously the case.
o (S1,14 + 1o+ 1) >0 We have to show
— dom(0") C dom(S;). We have this by S; . OF
— V¥l € dom(0%).(S1(1),05 1 + 1, + 1) € [05(1)]v.
Let 1 € dom(0%). By S;>.0" we have -; ;0% -, S;(1) : 0%(1). Because dom(-) C dom((}) and there

are no x € dom(-) we have (), 1, +15+1) € [-]v. Hence we get (S1(1), 0%, i +1a+1) € [8L(1)]¢
by the [Unary Fundamental Lemmal The goal follows because S1(1) € V by S; >. 0F.
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— V1€ dom(0%).8%(1) = type(S1,1). We have this by S; >. OF.
o (So,14 + 1o+ 1) >0%. We have to show

— dom(0") C dom(S3). We have this by Sy . OF.

— V1l e dom(01).(So(1), 05, 1 + 1o +1) € [0-()]v.
Let 1 € dom(0%). By Sop.08" we have -; 0; 8% -, So(1) : 8(1). Because dom(-) C dom((}) and there
are no x € dom(-) we have (),0%,1,+15+1) € [-]v. Hence we get (S2(1), 0%, 11 +1o+1) € [0L(1)]¢
by the [Unary Fundamental Lemmal The goal follows because Sy(1) € V by S, . OF.

— V1 € dom(6%).0(1) = type(Sa,1). We have this by S, >. OF.

o Y(1,1') € id(dom(01)). 8% (1) = 8- (1") A (S1(1), S2(1'), (6T, 0%, id(dom(8%))), i + 1o + 1) € W@L(l)ﬂé.
Let (1,1) € id(dom(0%)). Then 1 =1'. So it suffices to show

— 0% (1) = 0% (1). This is trivially true.
— (S1(1), S2(1), (6%, 8%, id(dom(61))), L + 1 + 1) € [ (L]
We have already seen that dom(6%) C dom(S;) and dom(8%) C dom(Ss). Hence in particular
* 1€ dom(S7) and
x 1 € dom(Ss).
Hence there are vi,vs and 11, T2 such that
* 1— (Vl,Tl) € S1 and
x Lr— (VQ,TQ) € Ss.
As 1 € dom(0%Y) we have that type(Sy,1) = 05(1) = type(Sa,1). Hence
* 1— (vl,GL(l)) € Sy and
% 1— (vg,05(1)) € So.
We have 0%(1) = AP for some type A and policy p. There are two cases:
1. pCA:
In this case 0%(1) T A and hence
* | — (vl,GL(l)) S (Sl)ﬂ and
* L= (vg,05(1) € (S2) 4-
By |[Lemma 10.31| and [Lemma 10.32[ we have S; ~4 S2. Because of this and because (1,1) €
dom((S1)4), we get
% (vi,v2,(0(s,) 5 0(s,) - id(dom((S1)4))), i + 12 +1) € [OL (V.
Because S; =4 L and Sy, =4 L, we also have O(sy, =0, =0L =
dom((S1)4) =dom(Ly) = dom(L). Hence
* (\)17\)2, (e]_, 6L7id(dom(L))),11 + 12 + ].) c H—GL(UTH}
The goal follows by monotonicity (Lemma 8.25)).
2. p [Z A. In this case it suffices to show
* (S1(1),0%, 1, + 1, +1) € [A]y. It suffices to show (S1(1),0%,1; +15+1) € [AP]y which is
the same as showing (S1 (1), 05, 1, +1o+1) € [0-(1)]y. We get this from (Sy, 13 +1o+1)>0%,
which we have already shown, because 1 € dom(0").
% (So(1),05, 1, +154+1) € [A]y. It suffices to show (Sz(1),0%,1; + 15+ 1) € [AP]y which is
the same as showing (So(1), 05, 1;+1+1) € [85(1)]y. We get this from (S, 1 +1a+1)>0",
which we have already shown, because 1 € dom(0").

From all of what we know we get by[Lemma 10.23|that there is a world W such that W I (0, 8%, idgom(or))

and @, w &fw,l) w’,w’. Let W be this world. By monotonicity (Lemma 10.22) we also have @, w E(,QV’O

w’, w’. By transitivity W 3 (¢, 0, idgom(L)), so this suffices to show the goal.

GLA = 9(52) . and

A

O

Corollary 10.38 (Termination insensitive flow-lock security).
Let e be in the language with just firstorder state. If -;2;0 tpc e : T and (@, w;2') € Rungy(e, L, 2, 0) and
(w’,w’;2") € Runy (e, L, 2, 0) where L is an A-low state and ¥Ym, @ zﬁ w’and ' C A or

T/ C A, then kq(e; @, w; Ly 2) =ka(e; w/,w’; L; 2).

0,0,iddom(e)),m))
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Proof. By [Theorem 10.1|it suffices to show Ym, (e, e, (8", GL,iddom(eL)),Z, r,m) € [t]#. Let m € N. By
the [Binary Fundamental Lemmalit suffices to show

1. (@, (6%, 0L id(dom(6L))), m) € [-]#. We have this because dom(:) C dom(()) and there are no
x € dom(-).

2. 0L 0 0. This follows from the definition of OF.

3. VL1 € dom(0). (1,1) € id(dom(0")). Let 1 € dom(8). Since dom(0") = dom(0) U dom(L), we get
(1,1) € id(dom(8%)).

O
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