
First-Order Logic for Flow-Limited Authorization
Andrew K. Hirsch∗† Pedro H. Azevedo de Amorim‡ Ethan Cecchetti‡ Ross Tate‡ Owen Arden§

†MPI-SWS ‡Cornell University §University of California, Santa Cruz

Abstract—We present the Flow-Limited Authorization First-
Order Logic (FLAFOL), a logic for reasoning about authorization
decisions in the presence of information-flow policies. We formal-
ize the FLAFOL proof system, characterize its proof-theoretic
properties, and develop its security guarantees. In particular,
FLAFOL is the first logic to provide a non-interference guarantee
while supporting all connectives of first-order logic. Furthermore,
this guarantee is the first to combine the notions of non-
interference from both authorization logic and information-flow
systems. All the theorems in this paper are proven in Coq.

Index Terms—authorization, information flow, logic, proof
theory, authorization logic

I. INTRODUCTION

Distributed systems often make authorization decisions based
on private data, which a public decision might leak. Preventing
such leakage requires nontrivial reasoning about the interaction
between information flow and authorization policies [1]–[3].
In particular, the justification for an authorization decision can
violate information-flow policies. To understand this concern,
consider a social network where Bob can say that only his
friends may view his photos, and that furthermore only his
friends may know the contents of his friend list. If Alice is
not on Bob’s friend list and she is denied access to one of
his photos, the denial leaks Bob’s private information: that
Alice is not on Bob’s friend list. Worse, if Alice can indirectly
determine what other principals are permitted to see Bob’s
photos, she could completely enumerate the friend list.

Reasoning about the interaction between information flow
and authorization policies is challenging for several reasons.
First, authorization logics and information-flow systems use dif-
ferent notions of trust. Information-flow systems tend to focus
on tracking data dependencies by representing information-
security policies as labels on data. They then represent
trust as a flows-to relation between labels, which determines
when one piece of data may safely influence another. In
contrast, authorization logics tend to directly encode delegations
between principals as a speaks-for relation. Such delegations
are often all-or-nothing, where a delegating principal trusts
any statements made by the trusted principal, although some
logics (e.g., [4]–[6]) support restricting delegations to specific
statements. Flows-to relations implicitly encode delegations
while speaks-for relations implicitly encode permitted flows.
To understand how, we must understand how these disparate
notions of trust interact.

Both forms of trust serve to selectively constrain the
communication that system components rely on to make secure
authorization decisions. For example, in the social network

∗Work done while author was at Cornell University

example above, suppose Bob’s security settings are recorded
on server X , and his photos are stored on server Y . When
Alice tries to view Bob’s photo, server Y communicates with
server X to determine if Alice is permitted to do so. Modeling
this communication is important because (1) the servers that Y
communicates with influence its authorization decisions, and
(2) communication can leak private information.

Describing the information security of authorization de-
cisions such as the one above requires modifying typical
authorization policies to include information flow. Information-
flow systems are excellent at tracking when and what infor-
mation one principal communicates to another, specifically
by transferring data from one label to another. It is less clear
when communications occur in authorization logics. A common
approach [6]–[8] simply models Alice delegating trust to Bob
as Alice importing all of Bob’s beliefs.

Authorization logics do, however, excel at reasoning about
beliefs. Authorization logics allow us to write Alice says ϕ,
meaning that Alice believes formula ϕ. This says statement
is itself a formula, so we can reason about what Bob believes
Alice believes by nesting says formulae. Information flow, in
contrast, has no notion of belief, and so cannot reason about
principals’ beliefs about each others’ beliefs.

In order to express authorization policies, not only does
one need the ability to express trust and communication,
but also a battery of propositions and logical connectives.
Any tool that combines authorization and information flow
should be capable of expressing enough logical connectives
to reason about real-world policies. First-order logic seems
to be a sweet spot of expressive power: it can encode most
authorization policies, but it is still simple enough to have
clean semantics. For instance, Nexus [6], [9]—a distributed
operating system that uses authorization logic directly in its
authorization mechanisms—can encode all of its authorization
policies using first-order logic.1

Finally, evaluating any attempt to combine authorization
and information flow policies must examine the resulting
security guarantees. Both authorization logics and information-
flow systems have a security property called non-interference.
Information-flow systems view non-interference as standard,
while authorization logics often view it as desirable but unob-
tainable. Although the two formulations look quite different,
both make guarantees limiting how one component of a system
can influence—i.e., interfere with—another. In authorization
logics, this takes the form “Alice’s beliefs can only impact the

1The Nexus Authorization Logic is actually a monadic second-order logic,
but this is used only to encode speaksfor; their examples only use first-order
quantification [6].

provability of Bob’s beliefs if Bob trusts Alice.” In information-
flow systems—which are mostly defined over programs—
changing the value of an input variable x can only change the
value of an output variable y when the label of x flows to the
label of y.

Both of these notions of non-interference are important.
Consider again the example where Bob’s friend list is private
but Alice attempts to view his photo. Because Bob’s friend list
is private, changing the list should not affect Alice’s beliefs.
For instance, Alice should not be affected by Bob adding
or removing Cathy. To enforce this, whether or not Cathy is
Bob’s friend must not affect the set of Bob’s beliefs that Alice
may learn. This requires authorization-logic non-interference,
since Bob’s beliefs should not affect Alice’s beliefs unless
they communicate. It also, however, requires information-flow
non-interference, since the privacy of Bob’s belief is why he
is unwilling to communicate.

Gluing together both ideas of non-interference requires
understanding the connection between their notions of trust.
As we have discussed, this connection is difficult to formulate,
making the non-interference combination harder still.

Our goal in this work is to provide a logic that supports
reasoning about both information flow and authorization
policies by combining their models of trust to obtain the
advantages of both. To this end, we present the Flow-Limited
Authorization First-Order Logic (FLAFOL), which
• provides a notion of trust between principals that can vary

depending on information-flow labels,
• clearly denotes points where communication occurs,
• uses says formulae to reason about principals’ beliefs,

including their beliefs about others’ beliefs,
• is expressive enough to encode real-world authorization

policies, and
• provides a strong security guarantee which combines both

authorization-logic and information-flow non-interference.
We additionally aim to clarify the foundations of flow-limited

authorization (introduced by Arden et al. [2]). We therefore
strive to keep FLAFOL’s model of principals, labels, and
communication as simple as possible. For example, unlike
previous work, we do not require that labels form a lattice.

A final contribution is development of an implementation of
FLAFOL in the Coq proof assistant [10] and formal proofs of
all theorems in this paper.2 Together these consists of 18,384
lines of Coq code. For more details, see the accompanying
technical report [11].

We are, of course, not the first to recognize the important
interaction of information-flow policies with authorization, but
all prior work in this area is missing at least one important
feature. The three projects that have done the most to combine
authorization and information flow are FLAM [2], SecPAL+ [1],
[5], and AURA [12], [13]. FLAM models trust using information
flow, AURA uses DCC [8], [14], a propositional authorization
logic, and SecPAL+ places information flow labels on principal-
based trust policies, but does not attempt to reason about the

2The Coq code is available at https://github.com/FLAFOL/flafol-coq.

combination at all. Neither FLAM nor SecPAL+ can reason
about nested beliefs, and both are significantly restricted in what
logical forms are allowed. Finally, FLAM’s security guarantees
are non-standard and difficult to compare to other languages
(see Section VII), while AURA relies on DCC’s non-interference
guarantee which does not apply on any trust relationships
outside of those assumed in the static lattice.

The rest of this paper is organized as follows: In Section II
we discuss three running examples. This also serves as an
intuitive introduction to FLAFOL. In Section III we show how
FLAFOL’s parameterization allows it to model real systems.
In Section IV we detail the FLAFOL proof rules. In Section V
we discuss the proof theory of FLAFOL, proving important
meta-level theorems, including consistency and cut elimination.
In Section VI we provide FLAFOL’s non-interference theorem.
We discuss related work in Section VII, and finally we conclude
in Section VIII.

II. FLAFOL BY EXAMPLE

We now examine several examples of authorization policies
and how FLAFOL expresses them. This will serve as a gentle
introduction to the main ideas of FLAFOL, and introduce
notation and running examples we use throughout the paper.

We explore three main examples in this section:
1) Viewing pictures on social media
2) Sanitizing data inputs to prevent SQL injection attacks
3) Providing a hospital bill in the presence of reinsurance
Each setting has different requirements, such as defining the

meaning of labels in its own way. The ability of FLAFOL to
adapt to each demonstrates its expressive power. In a new
setting, it is often convenient—even necessary—to define
constants, functions, and relations beyond those baked into
FLAFOL. FLAFOL supports this by being parameterized over
such definitions and having a security guarantee which holds
for any parameterization. We use such symbols freely in our
examples to express our intent clearly. Formally, FLAFOL
interprets them using standard proof-theoretic techniques, as
we see in Section III.

Notably, FLAFOL does not allow computation on terms, so
the meaning of functions and constants are axiomatized via
FLAFOL formulae. This allows principals to disagree on how
functions behave, which can be useful in modeling situations
where each principal has their own view of some piece of data.

A. Viewing Pictures on Social Media

We begin by reconsidering in more detail the example from
Section I where Alice requests to view Bob’s picture on a
social-media service. This service allows Bob to set privacy
policies, and Bob made his pictures visible only to his friends.
When Alice makes her request, the service can check if she is
authorized by scanning Bob’s friend list. If she is on the list
and the photo is available, it shows her the photo. If she is not
on Bob’s friend list, it shows her HTTP 403: Forbidden.

Bob may choose who belongs in the role of “friend.”
Following the lead of other authorization logics, FLAFOL
represents Bob believing that Alice is his friend as

https://github.com/FLAFOL/flafol-coq

Bob says IsFriend(Alice). Since says statements can encom-
pass any formula, we can express the fact that Bob believes
that Alice is not his friend as Bob says ¬IsFriend(Alice).

We interpret these statements as Bob’s beliefs. This reflects
the fact that Bob could be wrong, in the sense that he may affirm
formulae with provable negations. There is no requirement that
Bob believes all true things nor that Bob only believe true
things (see Section IV), so holding an incorrect belief does not
require Bob to believe False. Note that because False allows
us to prove anything, a principal who does believe False will
affirm every statement.

Now imagine that, as in Section I, the social-media service
allows Bob to set a privacy policy on his friend list as well. As
before, Bob can restrict his friend list so that only his friends
may learn its contents. In order to discuss such a policy in
FLAFOL, we need a way to express that Bob’s friend list is
private. Since, formally, his friend list is a series of beliefs
about who his friends are, we must express the privacy of those
beliefs. We view this as giving each belief a label describing
Bob’s policy about who may learn that belief. Syntactically,
we attach this label to the says connective. For example, Bob
may use the label Friends to represent the information-security
policy “I will share this with only my friends.”

If he attaches this policy to the beliefs representing
his friend list, there is no way to securely prove either
Bob says` IsFriend(Alice) or Bob says` ¬IsFriend(Alice)
when ` is less restrictive than Friends. To see why, imagine
what happens when Alice makes her request. If she is on
Bob’s friend list, she may again see the photo. However, if
she is not, showing her an HTTP 403 page would leak Bob’s
private information; Alice would learn that she is not on Bob’s
friend list, something Bob only shared with his friends. Since
FLAFOL’s security guarantee (Theorem 5) shows that every
FLAFOL proof is secure, neither option is provable in FLAFOL.
Clearly Bob needs to define a more permissive policy on his
friend list.

If Bob’s friend list were public, simply checking the list
would be enough to prove either of the above statements.
FLAFOL can easily express this by labeling each of Bob’s
beliefs about IsFriend as Public. Another, more subtle, change
would be to say that every principal can find out whether they
are on Bob’s friend list, but only Bob’s friends can see the rest
of the list. FLAFOL can also express this policy and prove it
decidable, but doing so will require significant infrastructure
using the technology we will build in Sections III and IV. We
show how to express this policy in the accompanying technical
report [11].

This example demonstrates how naively reasoning about
authorization with information flow can cause leaks, and
how FLAFOL can help reason about those beliefs, leading
to enforceable policies that capture the intent of system
developers.

B. Integrity Tracking to Prevent SQL Injection

For our second example, imagine a stateful web application.
It takes requests, updates its database, and returns web pages.

In order to avoid SQL injection attacks, the system will only
update its database based on high-integrity input. However, it
marks all web request inputs as low integrity, representing the
fact that they may contain attacks. The server has a sanitization
function San that will neutralize attacks, so when it encounters
a low-integrity input, it is willing to sanitize that input and
endorse the result.

FLAFOL’s support for arbitrary implications allows it to
easily encode such endorsements. Let the predicate DBInput(x)
mean that a value x—possibly taken from a web request—is a
database input. When a user makes a request with database in-
put x, we can thus represent it as System saysLInt DBInput(x).
Here LInt represents low-integrity beliefs. We represent the
system’s willingness to endorse any sanitized input as:

System saysLInt DBInput(x)→
System saysHInt DBInput(San(x))

This example shows the power of arbitrary implications
for expressing authorization and information-flow policies. It
also, however, demonstrates their dangers, since unconstrained
downgrades can allow information to flow in unintended ways.
In Section VI we will discuss how non-interference (Theorem 5)
adapts to these downgrades by weakening its guarantees.

C. Hospital Bills Calculation and Reinsurance

Imagine now that Alice finds herself in the hospital. Luckily
her employer provides health insurance, but they have just
switched companies. Now she has two unexpired insurance
cards, and she cannot figure out which one is valid. Thus,
either of two insurers, I1 and I2, may be paying.

Imagine further that Bob’s job is to create a correct hospital
bill for Alice. He uses the label `H to determine both who may
learn the contents of Alice’s bill and who may help determine
them. That is, `H expresses both a confidentiality policy and
an integrity policy. Bob believes that Alice’s insurer may help
determine the contents of Alice’s bill, since they can decide
what they are willing to pay for Alice’s surgery.

Bob knows that I2 has a reinsurance contract with I1. This
means that if Alice is insured with I2 and the surgery is very
expensive, I1 will pay some of the bill. Thus, I1 may help
determine the contents of Alice’s hospital bill, even if I2 turns
out to be her current insurer.

Bob is willing to accept Alice’s insurance cards as evidence
that she is insured by either I1 or I2, which we can express
as Bob says`H (CanWrite(I1, `H) ∨ CanWrite(I2, `H)).
Because Bob knows about I2’s reinsurance contract with I1,
he knows that if I2 helps determine the contents of Alice’s
bill, they will delegate some of their power to I1, which we
express as Bob says`H (I2 says`H CanWrite(I1, `H)).

Bob’s beliefs allow him to prove that I1 may help determine
the contents of Alice’s bill, since by assuming the previous two
statements we can prove that Bob says`H CanWrite(I1, `H).
There are two possible cases: if Bob already believes that I1
can help determine the contents of Alice’s bill, we are done.
Otherwise, Bob believes that I2 can help determine the contents
of Alice’s bill, and so Bob is willing to let I2 delegate their

power. Since he knows that they will delegate their power to
I1, he knows that I1 can help determine the contents of Alice’s
bill in this case as well. This covers all of the cases, so we
can conclude that Bob says`H CanWrite(I1, `H).

We think of Bob as performing this proof, since it is entirely
about Bob’s beliefs. From this point of view, Bob’s ability
to reason about I2’s beliefs appears to be Bob simulating
I2. This ability of one principal to simulate another provides
the key intuition to understand the generalized principal, a
fundamental construct in the formal presentation of FLAFOL
(see Section III).

We also note that Bob used I2’s beliefs in this proof, even
though he does not necessarily trust I2. However, he might
trust it if it turns out to be Alice’s insurer. Because Bob
trusts I2 in part of the proof but not in general, we refer
to this as discoverable trust. FLAFOL’s ability to handle
discoverable trust makes reasoning about its security properties
more difficult, as we see in Section VI.

This example shows how disjunctions can be used to express
policies when principals do not know the state of the world. It
also demonstrates how disjunctions make it difficult to know
how information can flow at any point in time, since we
may discover new statements of trust under one branch of
a disjunction. FLAFOL’s non-interference theorem adapts to
this by considering all declarations of trust that could possibly
be discovered in a given context.

D. Further Adapting FLAFOL

All of the above examples use information-flow labels to
express confidentiality policies, integrity policies, or both.
While confidentiality and integrity are mainstay features of
information flow tracking, information-flow labels can also
express other properties. For instance, MixT [15] describes
how to use information-flow labels to create safe transactions
across databases with different consistency models, and the
work of Zheng and Myers [16] uses information-flow labels
to provide availability guarantees. FLAFOL allows such alter-
native interpretations of labels by using an abstract permission
model to give meaning to labels.

By default, the permissions gain meaning only through
their behavior in context, but they are able to encode and
reason about a wide variety of authorization mechanisms. In
Section III, we see how FLAFOL can be used to reason about
capabilities, and in the accompanying technical report [11] we
furthermore discuss a model closer to military classification.

III. USING FLAFOL

In this section, we examine how to use FLAFOL to reason
about real systems. To do this, we look at a fictional verified-
distributed-systems designer Dana. She wants to formally prove
that confused-deputy attacks are impossible in her capability-
based system with copyable, delegatable read capabilities. Dana
employs a six-step process to reason about her system in
FLAFOL:
1) Decide on a set S of sorts of data she wants to represent.

2) Choose a set F of function symbols representing operations
in the system, and give those operations types.

3) Choose a set R of relation symbols representing atomic
facts to reason about, and give the relations types.

4) Develop axioms that encode meaning for these relationships.
5) Specify meta-level theorems stating her desired properties.
6) Prove that those meta-level theorems hold.

Sorts. First, Dana decides on what sorts of data she wants to
represent. We can think of sort as the logic word for “type.”
FLAFOL is defined with respect to a set S of sorts that must
include at least Label and Principal, but may contain more.
Dana wants to reason about capability tokens that grant read
access to data, so she also includes a sort named Token.

Dana uses the Principal sort to represent system principals,
but conceptually divides the Label sort into Confidentiality
and Integrity, two sorts which she also adds. Each
Confidentiality value defines a confidentiality policy which
may be applied to many pieces of data. A capability (which is
always public itself) grants read access to data governed by one
or more such policies. She uses the Integrity sort to represent
integrity policies on tokens themselves. We will see below how
she can enforce Label = Confidentiality× Integrity.

Function Symbols. Dana next decides on operations she
wants to reason about. This is also her chance to define
constants using nullary operations. Formally, FLAFOL is
defined with respect to an arbitrary set F of function symbols.
Each function comes equipped with a signature, or type,
expressing when it can be applied.

Dana considers what information she needs about a given
token. She needs a way to determine which confidentiality
level a token grants permission to read, so she creates function
symbol TknConf : Token→ Confidentiality. She needs to
determine the integrity of a token, which she represents with
a function symbol IntegOfTkn : Token→ Integrity. Finally,
she represents the token’s root of authority—that is, the
principal who created the token—with a function symbol
RootOfAuth : Token→ Principal. She also needs to be able
to determine the integrity that a principal commands, so she
includes a function symbol IntegOf : Principal→ Integrity.
Finally, since a token can potentially be transferred to anyone
in her system, she creates a constant Public : Confidentiality
to represent this.

Dana wants to enforce that labels are pairs of confi-
dentiality and integrity. She therefore creates two “projec-
tion” function symbols πC : Label→ Confidentiality and
πI : Label→ Integrity, along with a third pair symbol
(,) : Confidentiality→ Integrity→ Label. The first two
ensure that labels contain a confidentiality and an integrity,
while pairing allows creation of labels from a confidentiality
with an integrity. This makes labels pairs of confidentiality and
integrity. Dana also adds axioms corresponding to the η and β
laws for pairs.

Relation Symbols. Dana can now choose relations repre-
senting facts that she wants to reason about. Along with

sorts and functions, FLAFOL is defined with respect to
a set R of relation symbols, allowing it to reason about
more facts. The set R must include at least flows-to (v),
CanRead, and CanWrite, but may contain more. We call these
required relations permissions because they define the trust
relationships governing communication. The relation ` v `′

means information with label ` can affect information with
label `′, CanRead(p, `) means that principal p may learn
beliefs with label `, and CanWrite(p, `) means p may influence
beliefs with label `.

Dana is able to use these relations to define the permissions
her capability tokens grant. She also includes a fourth relation
inR, HasToken(Principal,Token), defining token possession:
if HasToken(p, t), then principal p has (a copy of) token t.

Axioms. Dana describes the behavior of her system with
axioms that use the sorts, functions, and relations she defined
above. These should be consistent, in the sense that they do
not allow a derivation of False. Theorem 1 in Section V-A
gives conditions under which all of the axioms that we will
discuss in this section are consistent.

Dana uses three main axioms: one describing how tokens
may be copied and delegated, one describing when one
principal may read another’s beliefs, and one describing when
a principal may affect another’s beliefs. She may use more
axioms if she likes—e.g., to capture principals’ beliefs about
permitted flows between labels.

Dana’s first axiom allows any principal to copy any capability
it holds and give that copy to another principal:

∀q :Principal.∀t :Token.(
∃p :Principal.HasToken(p, t) ∧
p says(Public,IntegOfTkn(t)) HasToken(q, t)

)
→ HasToken(q, t)

This says that, for principals p and q, if p holds a read capability
token t, p can pass t to q. To do so, p must affirm that q has t
at a public label with the integrity of the token. Note that the
use of Public here means Dana’s system must allow everyone
to learn whenever one principal copies a token and passes it
to another.

Dana’s second axiom defines when a principal p allows q
to read a belief of p’s labeled `. First, p checks that q has a
token, and that p believes that the token gives read access to
something at least as confidential as `. Second, p checks to
make sure that the token’s root authority may influence this
belief:
∀q :Principal.∀` :Label.∀p :Principal.∀`′ :Label. ∃t :Token.HasToken(q, t)

∧ p says`′ πC(`) v TknConf(t)
∧ p says`′ CanWrite(RootOfAuth(t), `′)

→ p says`′ (CanRead(q, `))

More formally, it says that if q holds some token t and p be-
lieves both that t grants read permissions for `’s confidentiality
and that the root of authority for t can influence p’s beliefs at `′,
then p will allow q to read `. This defines what it means for a
principal (p here) to believe that a token grants read access to

Sorts σ ::= Label | Principal | · · ·
Labels `

Principals p, q, r
Functions f ::= · · ·
Relations R ::= CanRead(Principal,Label)

| CanWrite(Principal,Label)
| Label v Label | · · ·

σ-terms t ::= x | f(t1, . . . , tn)
Formulae ϕ,ψ, χ ::= R(t1, . . . , tn)

| True | False
| ϕ ∧ ψ | ϕ ∨ ψ | ϕ→ ψ
| ∀x :σ. ϕ | ∃x :σ. ϕ
| p says` ϕ

Generalized
Principals g ::= 〈〉 | g · p〈`〉

Fig. 1. FLAFOL Syntax

their data. Dana now needs to make sure that whenever a read
access is granted in her system, not only does the principal
who gets read access have a token, but that the principal who
owns the data does indeed believe that the token grants read
access to that data.

Finally, her third axiom states that one principal p believes
that another principal q, can write a label ` if p believes that
the integrity of q flows to the integrity of `:

∀q :Principal.∀` :Label.∀p :Principal.∀`′ :Label.
p says`′ (IntegOf(q) v πI(`))→ p says`′ (CanWrite(q, `))

Dana then needs to make sure that write accesses are only
granted to principals with high enough integrity.

Metatheoretic Properties. Dana has now created a model
of her system, so she can use it to state and prove properties
of her system as meta-theorems. Luckily, Rajani, Garg, and
Rezk [17] have shown that information-flow integrity tracking
with a non-interference result is sufficient to avoid confused
deputy attacks with capability systems. Therefore Theorem 5
provides the guarantees she needs.

FLAFOL Syntax. This example demonstrates FLAFOL’s
flexibility as a powerful tool for reasoning about authorization
mechanisms in the presence of information-flow policies. We
saw that, since FLAFOL is defined with respect to the three
sets S, F , and R, it can express the key components of a
system. This parameterized definition gives rise to the formal
FLAFOL syntax in Figure 1.

In order to use the function and relation symbols and
incorporate axioms, FLAFOL allows proofs to occur in a
context. FLAFOL additionally includes rules requiring flows-to
to be reflexive and transitive, placing a preorder on the Label
sort,3 and requiring CanRead and CanWrite to respect a form

3Many information-flow tools require their labels to form a lattice. We
find that a preorder is sufficient for FLAFOL’s design and guarantees, so we
decline to impose additional structure. In Section V-A we show that enforcing
a lattice structure is both simple and logically consistent.

FLOWSTOREFL
Γ ` ` v ` @ g

FLOWSTOTRANS
Γ ` `1 v `2 @ g Γ ` `2 v `3 @ g

Γ ` `1 v `3 @ g

CRVAR
Γ ` CanRead(p, `2) @ g Γ ` `1 v `2 @ g

Γ ` CanRead(p, `1) @ g

CWVAR
Γ ` CanWrite(p, `1) @ g Γ ` `1 v `2 @ g

Γ ` CanWrite(p, `2) @ g

Fig. 2. Permission Rules

of variance. If `1 v `2 and Alice can read data A with label `2,
then she may learn information about data with label `1 used
to calculate A. This means she should also be able to read data
with label `1. Thus, CanRead must (contravariantly) respect
the preorder on labels. Similarly, if Alice can help determine
some piece of data B labeled with `1, she can influence any
data labeled with `2 that is calculated from B, so Alice should
be able to help determine data labeled at `2. Thus, CanWrite
must (covariantly) respect the preorder on labels.

Figure 2 presents these rules formally. We give the proof rules
in the form of a sequent calculus. The trailing @ g represents
who affirms that formula in the proof, similarly to how says
formulae represent who affirms a statement at the object level.
Unlike says formulae, these meta-level objects—which we call
generalized principals—encode arbitrary reasoners, including
possibly-simulated principals.

Recall from Section II-C that we can think of some proofs as
being performed by principals if those proofs entirely involve
that principal’s beliefs. In that example, Bob reasoned about
his belief that another principal, the insurer I2, trusted a third
principal, the insurer I3. We think of this ability to reason
about the beliefs of others as the ability to simulate other
principals. In fact, because principals’ beliefs are segmented
by labels, principals can have multiple simulations of the same
other principal.

This suggests that FLAFOL captures the reasoning of
principals at some level of simulation. A generalized principal
is a stack of principal/label pairs, representing a stack of
simulators and simulations. The empty stack, written 〈〉,
represents ground truth. A stack with one more level, written
g · p〈`〉, represents the beliefs of p at level ` according to the
generalized principal g. Figure 1 contains the formal grammar
for generalized principals.

IV. PROOF SYSTEM

So far, we have discussed the intuitions behind FLAFOL
and its syntax. Here we introduce FLAFOL formally. Unfortu-
nately, we cannot examine every aspect of FLAFOL’s formal
presentation in detail, though interested readers should see
Appendix A. Instead, we discuss the most novel and most
security-relevant aspects of FLAFOL’s design.

FLAFOL sequents are of the form Γ ` ϕ @ g, where Γ is a
context containing beliefs. This means that the FLAFOL proof
system manipulates beliefs, as described in Section III. Readers
familiar with sequent calculus may recognize that FLAFOL is
intuitionistic, as there is only one belief on the right side of
the turnstile.4

Sequent calculus rules tend to manipulate beliefs either on
the left or the right side of the turnstile. For instance, consider
the FLAFOL rules for disjunctions:

ORL
Γ, ϕ @ g ` χ @ g′ Γ, ψ @ g ` χ @ g′

Γ, (ϕ ∨ ψ @ g) ` χ @ g′

ORR1
Γ ` ϕ @ g

Γ ` ϕ ∨ ψ @ g
ORR2

Γ ` ψ @ g

Γ ` ϕ ∨ ψ @ g

We find it easiest to read left rules “up” and right rules
“down.” With this reading, the ORL rule tells us how to use
an assumption of the form ϕ ∨ ψ @ g in order to prove a
belief χ @ g′ by performing case analysis. That is, ORL tells
us how to prove χ @ g′ assuming ϕ ∨ ψ @ g if we can prove
that χ @ g′ assuming ϕ @ g and separately assuming ψ @ g.

The ORR1 rule takes a proof of ϕ @ g and uses it to
prove ϕ ∨ ψ @ g. The ORR2 rule is symmetric, so it takes a
proof of ψ @ g and uses it to prove ϕ ∨ ψ @ g.5

Note that these rules (along with the says rules discussed
below) allow says to distribute over disjunctions. That is, given
p says` (ϕ∨ψ), we can prove (p says` ϕ)∨ (p says` ψ). In
an intuitionistic logic like FLAFOL, disjunctions must be a
proof of one side or the other. The proof that says distributes
over ∨ then says that if p has evidence of either ϕ or ψ, then
p can examine this evidence to discover whether it is evidence
of ϕ or of ψ.

Most of the rules of FLAFOL are standard rules for
first-order logic, but with generalized principals included to
indicate who believes each formula. For instance, the rules
for disjunctions above were likely familiar to those who know
sequent calculus.

Figure 3 contains FLAFOL rules selected for discussion.
The first, FALSEL, tells us how to use False as an assumption.
In standard intuitionistic first-order logic, this is simply the
principle of Ex Falso: if we assume False, we can prove
anything. In FLAFOL, a generalized principal who assumes
false is willing to affirm any formula. This includes statements
about other principals, so FALSEL extends the generalized
principal arbitrarily. We use g · g′ as notation for extending
the generalized principal g with a list of principal-label pairs,
denoted g′.

The implication rules IMPR and IMPL interpret the premise
of an implication as ground truth, while the generalized
principal who believes the implication believes the consequent.
In particular, this means that says statements do not distribute

4Recall that we argued in Section II-A that reasoning about authorization
and information-flow security together is naturally intuitionistic, since we
cannot securely conclude ϕ or ¬ϕ in some naturally-occurring contexts.

5For readers interested in learning more about sequent calculus, we recom-
mend MIT’s interactive tool for teaching sequent calculus as a tutorial [18].

FALSEL
Γ,False @ g ` ϕ @ g · g′

IMPL
Γ ` ϕ @ 〈〉 Γ, ψ @ g ` χ @ g′

Γ, (ϕ→ ψ @ g) ` χ @ g′
IMPR

Γ, ϕ @ 〈〉 ` ψ @ g

Γ ` ϕ→ ψ @ g

SAYSL
Γ, ϕ @ g · p〈`〉 ` ψ @ g′

Γ, p says` ϕ @ g ` ψ @ g′
SAYSR

Γ ` ϕ @ g · p〈`〉
Γ ` p says` ϕ @ g

VARR

Γ ` ϕ @ g · p〈`′〉 · g′
Γ ` `′ v ` @ g · p〈`〉
Γ ` ϕ @ g · p〈`〉 · g′

FWDR

Γ ` ϕ @ g · p〈`〉 · g′
Γ ` CanRead(q, `) @ g · p〈`〉 Γ ` CanWrite(p, `) @ g · q〈`〉

Γ ` ϕ @ g · q〈`〉 · g′

Fig. 3. Selected FLAFOL Proof Rules

over implication as one might expect, i.e., p says` (ϕ → ψ)
does not imply that (p says` ϕ) → (p says` ψ). Instead,
p says` (ϕ→ ψ) implies ϕ→ (p says` ψ). We can thus
think of implications as conditional knowledge. That is, if
a generalized principal g believes ϕ→ ψ, then g believes ψ
conditional on ϕ being true about the system.

We can still form implications about generalized principals’
beliefs, but we must insert appropriate says statements into
the premise to do so. In Section V-D, we discuss how this
semantics is necessary for both our proof theoretic and our
security results.

The next two rules of Figure 3, SAYSR and SAYSL, are
the only rules which specifically manipulate says formulae.
Essentially, generalized principals allow us to delete the says
part of a formula while not forgetting who said it. Thus,
generalized principals allow us to define sequent calculus rules
once for every possible reasoner.

The final rules, VARR and FWDR, define communication
in FLAFOL. Both manipulate beliefs on the right and have
corresponding left rules, which act contravariantly and can be
found in Appendix A.

Information-flow communication is provided by the variance
rule VARR. This can be thought of like the variance rules used
in subtyping. Most systems with information-flow labels do
not have explicit variance rules, but instead manipulate relevant
labels in every rule. By adding an explicit variance rule, we
not only simplify every other FLAFOL rule, we also remove
the need for the label join and meet operators that are usually
used to perform the label manipulations. Others have noted
that adding explicit variance rules simplifies the design of the
rest of the system [19], [20], but it remains an unusual choice.

The forwarding rule FWDR provides authorization-logic-
style communication. In FLAFOL, p can forward a belief at
label ` to q if:

• p is willing to send its beliefs at label ` to q, denoted
p says` CanRead(q, `), and

• q is willing to allow p to determine its beliefs at label `,
denoted q says` CanWrite(p, `).

After establishing this trust, p can package up its belief and
send it to q, who will believe it at the same label.

s ∈ {+,−} + = − − = +

ϕs ≤ (ϕ ∧ ψ)s ψs ≤ (ϕ ∧ ψ)s

ϕs ≤ (ϕ→ ψ)s ψs ≤ (ϕ→ ψ)s

ϕs ≤ ϕs
ϕs ≤ ψs

′
ψs

′
≤ χs

′′

ϕs ≤ χs
′′ ϕs ≤ (p says` ϕ)s

Fig. 4. Selected rules for the Signed Subformula Relation

V. PROOF THEORY

In this section, we evaluate FLAFOL’s logical design. We
show that FLAFOL has the standard sequent calculus properties
of (positive) consistency and cut elimination and discuss
fundamental limitations that inform our unusual implication
semantics. We also develop a new proof-theoretic tool, com-
patible supercontexts, for use in our non-interference theorem
in Section VI.

A. Consistency

One of the most important properties about a logic is
consistency, meaning it is impossible to prove False. This
is not possible in an arbitrary context, since one could always
assume False. One standard solution is to limit the theorem
to the empty context. By examining the FLAFOL proof rules,
however, we see that it is only possible to prove False by
assumption or by Ex Falso. Either method requires that False
already be on the left-hand side of the turnstile, so if False
can never get there, then it should be impossible to prove.

To understand when False can appear on the left-hand side
of the turnstile, we note that formulae on the left tend to stay
on the left and formulae on the right tend to stay on the right.
The only exception is the implication rules IMPL and IMPR
which move the premise of the implication to the other side.
The fact that no proof rule allows us to change either side
of the sequent arbitrarily gives useful structure to proofs. To
handle implications, however, we must keep track of their
nesting structure, which we do by considering signed formulae.

We call a formula in a sequent positive if it appears on the
right side of the turnstile and negative if it appears on the left.
If ϕ is positive we write ϕ+, and if ϕ is negative we write ϕ−.
Figure 4 shows selected rules from the (mostly-standard) signed
subformula relation, which we discuss in more depth in the
accompanying technical report [11].

Theorem 1 (Positive Consistency). For any context Γ, if

False− � ϕ− for all ϕ @ g ∈ Γ

then Γ 0 False @ g′.

The proof follows by induction on the FLAFOL proof rules.
Note that formulae which do not contain False as a negative
subformula are called positive formulae, explaining the name.

We get the result with an empty context as a corollary. This
states that False is not a theorem of FLAFOL.

Corollary 1 (Consistency). 0 False @ g

Theorem 1 demonstrates that a variety of useful constructs
are logically consistent. For instance, we can add a lattice
structure to FLAFOL’s labels. We can define join (t) and meet
(u) as binary function symbols on labels and > and ⊥ as label
constants. Then we can simply place the lattice axioms (e.g.,
∀` :Label. ` v >) in our context to achieve the desired result.
Since none of the lattice axioms include False, Theorem 1
ensures that they are consistent additions to the logic.

B. Compatible Supercontexts

To prove Theorem 1 we needed to consider the possible
locations of formulae within a sequent, but in Section VI we
will need to reason about the possible locations of beliefs.
To enable this, we introduce the concept of a compatible
supercontext (CSC). Informally, the CSCs of a sequent are
those contexts that contain all of the information in the
current context, along with any counterfactual information
that can be considered during a proof. Intuitively, the rules
ORL and IMPL allow a generalized principal to consider
such information by using either side of a disjunction or the
conclusion of an implication. If it is possible to consider such
a counterfactual, there is a CSC which contains it. We use
the syntax ∆� Γ ` ϕ @ g to denote that ∆ is a CSC of the
sequent Γ ` ϕ @ g. Figure 5 contains selected rules for CSCs.
The full CSC relation can be found in Appendix B.

Since all of the information in Γ has already been discovered
by the generalized principal who believes that information, we
require that Γ� Γ ` ϕ @ g with CSCREFL.

If we can discover two sets of information, we can discover
everything in the union of those sets using CSCUNION. This
rule feels different from the others, since it axiomatizes certain
properties of CSCs. We conjecture that there is an alternative
presentation of CSCs where we can prove this rule.

The rest of the rules for CSCs essentially follow the proof
rules, so that any belief added to the context during a proof can
be added to a CSC. For instance CSCORL1 and CSCORL2
allow either branch of an assumed disjunction to be added to a
CSC, following the two branches of the ORL rule of FLAFOL.

CSCREFL
Γ� Γ ` ϕ @ g

CSCUNION
∆1 � Γ ` ϕ @ g ∆2 � Γ ` ϕ @ g

∆1 ∪∆2 � Γ ` ϕ @ g

CSCORL1
∆� Γ, ϕ @ g ` χ @ g′

∆� Γ, (ϕ ∨ ψ @ g) ` χ @ g′

CSCIMPR
∆� Γ, ϕ @ 〈〉 ` ψ @ g

∆� Γ ` ϕ→ ψ @ g

Fig. 5. Selected Rules for Compatible Supercontexts

If a context appears in a proof of a sequent, then it is a CSC
of that sequent. We refer to this as the compatible-supercontext
property (CSC property).

Theorem 2 (CSC Property). If ∆ ` ψ @ g′ appears in a proof
of Γ ` ϕ @ g, then ∆� Γ ` ϕ @ g.

C. Cut Elimination

In constructing a proof, it is often useful to create a lemma,
prove it separately, and use it in the main proof. If we both
prove and use the lemma in the same context, the main proof
follows in that context as well. We can formalize this via the
following rule:

CUT
Γ ` ϕ @ g1 Γ, ϕ @ g1 ` ψ @ g2

Γ ` ψ @ g2

This rule is enormously powerful. It allows us to not only
create lemmata to use in a proof, but also simply prove things
whose other proofs are complicated and non-obvious. For
instance, consider the rule

UNSAYSR
Γ ` p says` ϕ @ g

Γ ` ϕ @ g · p〈`〉

We can show that this rule is admissible—meaning any sequent
provable with this rule is provable without it—by cutting a
proof of the sequent Γ ` p says` ϕ @ g with the following
proof:6

SAYSL

AX
ϕ @ g · p〈`〉 ` ϕ @ g · p〈`〉

p says` ϕ @ g ` ϕ @ g · p〈`〉

However, the CUT rule allows an arbitrary formula to appear
on both sides of the turnstile in a proof. That formula may
not even be a subformula of anything in the sequent at the
root of the proof-tree! This would seemingly destroy the CSC
property that FLAFOL enjoys, and which we rely on in order
to prove FLAFOL’s security results. As is standard in sequent
calculus proof theory, we show that CUT can be admitted,
allowing FLAFOL the proof power of CUT while maintaining
the analytic power of the CSC property.

6Not only can UNSAYSR be proven without CUT (as can all FLAFOL
proofs), it is actually important for proving cut elimination. See the Coq code.

Theorem 3 (Cut Elimination). The CUT rule is admissible.

To prove Theorem 3, we first normalize each FLAFOL proof
and then induct on the formula ϕ followed by each proof in turn.
Both of these inductions are very involved. The accompanying
technical report [11] contains more details.

This theorem is one of the key theorems of proof theory [21],
[22]. Frank Pfenning has called it “[t]he central property of se-
quent calculi” [23]. From the propositions-as-types perspective,
cut elimination is preservation of types under substitution.

D. Implications and Communication

Recall from Section IV how we interpret implication
formulae such as Alice says` (ϕ→ ψ): if ϕ is true about
the system, then Alice believes ψ at label `. We can now see
why we use this interpretation of implication. In particular, we
consider replacing IMPL and IMPR with the following rules:

IMPL′ Γ ` ϕ @ g Γ, ψ @ g ` χ @ g′

Γ, (ϕ→ ψ) @ g ` χ @ g′

IMPR′ Γ, ϕ @ g ` ψ @ g

Γ ` ϕ→ ψ @ g

Doing so allows us to prove that says distributes over
implications. That is,

p says` (ϕ→ ψ) @ g ` (p says` ϕ)→ (p says` ψ) @ g.

It also allows us to prove that says un-distributes over
implication:

(p says` ϕ)→ (p says` ψ) @ g ` p says` (ϕ→ ψ) @ g.

While IMPL′, IMPR′, and the says distribution results may all
appear sensible, they actually cause security bugs and make
cut elimination impossible.

To see why, imagine that there are three principals of interest:
Alice, Bob, and Cathy, and three labels: `P, `S, and `TS,
representing Public, Secret, and TopSecret, respectively. (We
use the shorter names to make our formal proofs easier to read.)
Anybody in the system can read public data (i.e., data labeled
with `P). Alice and Cathy believe all three principals of interest
can read secret data (i.e., data labeled with `S), but Bob is
unsure of the security clearances and will only send public
data to other principals. Alice and Cathy also have top secret
clearance, but Bob does not, so he cannot read data labeled
at `TS. We can formalize these permission policies in the
following context:

Γ = ∀p :Principal. p says`S
`P v `S @ 〈〉,

∀p :Principal. p says`TS
`S v `TS @ 〈〉,

CanRead(Bob, `S) @ Alice〈`S〉,
CanRead(Alice, `TS) @ Cathy〈`TS〉,
∀p, q :Principal. p says`P

CanRead(q, `P) @ 〈〉,
∀p, q :Principal. ∀`, `′ :Label. p says` CanWrite(q, `′) @ 〈〉

Additionally, Bob serves as a redactor: given ϕ—which
represents a document containing secret information—he can

produce ψ—which represents a redacted version of the same
document—performing a declassification in the process. We
represent Bob’s ability by adding one belief:

Γ′ = Γ, (Bob says`S
ϕ)→ (Bob says`P

ψ) @ 〈〉

Imagine further that Alice decides she wants to redact secret
information from a TopSecret version of ϕ that she receives
from Cathy, but leave it TopSecret. If she can figure out how
to get an implication representing redaction, she can simply
receive ϕ from Cathy and use the implication. This is the proof
in Figure 6. For the sake of brevity and readability, we do not
explicitly state side conditions that are proven straightforwardly
from Γ. The rules where these side conditions should appear
are marked with “†.”

While she knows how to use an implication representing
redaction, Alice does not know how to redact ϕ except by
giving it to Bob. Using IMPL′ and IMPR′, she is able to
package up the process “give Bob a secret version of ϕ, get
back a public version of ψ, and then use variance to get a
secret version of ψ” as a belief ϕ→ ψ @ Alice〈`S〉. She can
then use variance again to get a belief ϕ→ ψ @ Alice〈`TS〉.
This is the proof in Figure 7. Again, we elide side conditions
that are proven straightforwardly from Γ, and mark the rules
where they should appear with “†.”

Cutting these two proofs together gives Alice what she wants:
a TopSecret version of ψ. However, this cut is not possible to
eliminate! Examining this through a propositions-as-types lens
tells us why: one of Alice or Cathy must send a TopSecret
version of ϕ to Bob, which neither is willing to do.

VI. NON-INTERFERENCE

Both authorization logics and information flow systems have
important security properties called non-interference [24]–[26].
On the face, these two notions of non-interference look very
different, but their core intuitions are the same. Both statements
aim to prevent one belief or piece of data from interfering with
another—even indirectly—unless the security policies permit
an influence. Authorization logics traditionally define trust
relationships between principals and non-interference requires
that p’s beliefs affect the provability of q’s beliefs only when
q trusts p. Information flow control systems generally specify
policies as labels on program data and use the label flows-to
relation to constrain how inputs can affect outputs. For non-
interference to hold, changing an input with label `1 can only
alter an output with label `2 if `1 v `2.

FLAFOL views both trust between principals and flows
between labels as ways to constrain communication of beliefs.
The forward rules model an authorization-logic-style sending
of beliefs from one principal to another based on their
trust relationships. The label variance rules model a single
principal transferring beliefs between labels based on the flow
relationship between them. By reasoning about generalized
principals, which include both the principal and the label,
we are able to capture both at the same time. The result
(Theorem 5) mirrors the structure of existing authorization
logic non-interference statements [8], [26]. No similar theorem

FWDL†

IMPL′

AX
Γ, ϕ @ Alice〈`TS〉 ` ϕ @ Alice〈`TS〉 Γ, ϕ @ Alice〈`TS〉, ψ @ Alice〈`TS〉 ` ψ @ Alice〈`TS〉

AX

Γ, (ϕ→ ψ) @ Alice〈`TS〉, ϕ @ Alice〈`TS〉 ` ψ @ Alice〈`TS〉
Γ, (ϕ→ ψ) @ Alice〈`TS〉, ϕ @ Cathy〈`TS〉 ` ψ @ Alice〈`TS〉

Fig. 6. Alice using Cathy’s ϕ and a redaction function

VARR†

IMPR′

VARR†

FWDL†

FWDR†

IMPL′

SAYSR

AX
Γ, ϕ @ Bob〈`S〉 ` ϕ @ Bob〈`S〉

Γ, ϕ @ Bob〈`S〉 ` Bob says`S
ϕ @ 〈〉

Γ, ψ @ Bob〈`P〉 ` ψ @ Bob〈`P〉
AX

Γ,Bob says`P
ψ @ 〈〉 ` ψ @ Bob〈`P〉

SAYSL

Γ, (Bob says`S
ϕ)→ (Bob says`P

ψ) @ 〈〉, ϕ @ Bob〈`S〉 ` ψ @ Bob〈`P〉
Γ′, ϕ @ Bob〈`S〉 ` ψ @ Alice〈`P〉
Γ′, ϕ @ Alice〈`S〉 ` ψ @ Alice〈`P〉
Γ′, ϕ @ Alice〈`S〉 ` ψ @ Alice〈`S〉

Γ′ ` (ϕ→ ψ) @ Alice〈`S〉
Γ′ ` (ϕ→ ψ) @ Alice〈`TS〉

Fig. 7. Proof corresponding to Alice sending ϕ to Bob and receiving a ψ back

reasons about information flow or applies to policies combining
discoverable trust and logical disjunction. Theorem 5 does both.

A. Trust in FLAFOL

Building a notion of trust on generalized principals requires
us to consider both the trust of the underlying (regular)
principals and label flows. The explicit label flow relation
(v) cleanly captures restrictions on changing labels. Trust
between principals requires more care. Alice may trust Bob with
public data, but that does not mean she trusts him with secret
data. Similarly, Alice may believe that Bob can influence low
integrity data without believing Bob is authorized to influence
high integrity data. This need to trust principals differently at
different labels leads us to define our trust in terms of the two
permission relations: CanRead(p, `) and CanWrite(p, `).

We group label flows and principal trust together in a meta-
level statement relating generalized principals. As this relation
is the fundamental notion of trust in FLAFOL, we follow
existing authorization logic literature and call it speaks for.

The speaks-for relation captures any way that one generalized
principal’s beliefs can be safely transferred to another. This can
happen through flow relationships (g · p〈`〉 speaks for g · p〈`′〉
if ` v `′), forwarding (g · p〈`〉 speaks for g · q〈`〉 if p can
forward beliefs at ` to q), and introspection (g · p〈`〉 speaks for
g · p〈`〉 · p〈`〉 and vice versa). We formalize speaks-for with
the rules in Figure 8.

To validate this notion of trust, we note that existing
authorization logics often define speaks-for as an atomic
relation and create trust by requiring that, if p speaks for
q, then p’s beliefs can be transferred to q. As our speaks-for
relation exactly mirrors FLAFOL’s rules for communication,
it enjoys this same property.

Theorem 4 (Speaks-For Elimination). The following rule is
admissible in FLAFOL:

ELIMSF
Γ ` ϕ @ g1 Γ ` g1 SF g2

Γ ` ϕ @ g2

REFLSF
Γ ` g SF g

EXTSF
Γ ` g1 SF g2

Γ ` g1 · p〈`〉 SF g2 · p〈`〉

SELFLSF
Γ ` g · p〈`〉 SF g · p〈`〉 · p〈`〉

SELFRSF
Γ ` g · p〈`〉 · p〈`〉 SF g · p〈`〉

VARSF
Γ ` ` v `′ @ g · p〈`′〉

Γ ` g · p〈`〉 SF g · p〈`′〉

FWDSF

Γ ` CanRead(q, `) @ g · p〈`〉
Γ ` CanWrite(p, `) @ g · q〈`〉

Γ ` g · p〈`〉 SF g · q〈`〉

TRANSSF
Γ ` g1 SF g2 Γ ` g2 SF g3

Γ ` g1 SF g3

Fig. 8. The rules defining speaks for.

With this notion of trust we can begin structuring a non-
interference statement. We might like to say that beliefs of g1
can only influence beliefs of g2 if Γ ` g1 SF g2, or formally:
if Γ, (ϕ @ g1) ` ψ @ g2 is provable, then either Γ ` ψ @ g2
is provable or Γ ` g1 SF g2. Unfortunately, this statement is
false for three critical reasons: says statements, implication,
and the combination of discoverable trust and disjunctions.

B. Says Statements and Non-Interference

The first way to break the proposed non-interference state-
ment above is simply by moving affirmations of a statement
between the formula—using says—and the generalized prin-
cipal who believes it. For example, we can trivially prove
p says` ϕ @ 〈〉 ` ϕ @ 〈〉 · p〈`〉, yet we cannot prove
〈〉 SF 〈〉 · p〈`〉.

To address this case, we can view p says` ϕ @ 〈〉 as
a statement that 〈〉 · p〈`〉 believes ϕ. This insight suggests

generally pushing all says modalities into the generalized
principal. We can do this for simple formulae, but the process
breaks down with conjunction and disjunction. In those cases,
the different sides may have different says modalities, and
either side could influence a belief through the different
resulting generalized principals. We alleviate this concern by
considering a set of generalized principals referenced in a given
belief. We build this set using an operator G:

G(χ @ g) ,

G(ϕ @ g · p〈`〉) χ = p says` ϕ
G(ϕ @ g) ∪ G(ψ @ g) χ = ϕ ∧ ψ or ϕ ∨ ψ
G(ψ @ g) χ = ϕ→ ψ⋃
t:σ G(ϕ[x 7→ t] @ g) χ = ∀x :σ. ϕ or ∃x :σ. ϕ

{g} otherwise

For implications, G only considers the consequent, since only its
consequent can affect the provability of a belief. For quantified
formulae, a proof may substitute any term of the correct sort
for the bound variable, so we must as well.

Using this new operator, we can patch the hole says
statements created in our previous non-interference statement,
producing the following: If Γ, (ϕ @ g1) ` ψ @ g2, then
either Γ ` ψ @ g2, or there is some g′1 ∈ G(ϕ @ g1),
g′2 ∈ G(ψ @ g2), and some g′′1 such that Γ ` g′1 · g′′1 SF g′2.

Here g′′1 represents the ability of a generalized principal
to ship entire simulations to other generalized principals. In
particular, the forward and variance rules operate on an “active”
prefix of the current generalized principal; g′′1 represents the
“inactive” suffix.

The G operator converts reasoning about beliefs from the
object level (FLAFOL formulae) to the meta level (generalized
principals). FLAFOL’s ability to freely move between the two
forces us to push all such reasoning in the same direction to
effectively compare the reasoner in two different beliefs. Prior
authorization logics do not contain a meta-level version of
says, meaning similar conversions do not even make sense.

C. Implications

While use of the G function solves part of the problem with
our original non-interference proposal, it does not address all
of the problems. Implications can implicitly create new trust
relationships, allowing beliefs of one generalized principal to
affect beliefs of another, even when no speaks-for relationship
exists. To understand how this can occur, we revisit our example
of preventing SQL injection attacks from from Section II-B.

Recall from Section II-B that a web server might treat
sanitized versions of low-integrity input as high integrity.
Further recall, it might represent this willingness with the
following implication.

System saysLInt DBInput(x)→
System saysHInt DBInput(San(x))

In an intuitively-sensible context where System believes
HInt v LInt—high integrity flows to low integrity—but
not vice versa, there is no way to prove System〈LInt〉 SF
System〈HInt〉. The presence of this implication, however,
allows some beliefs at System〈LInt〉 to influence beliefs at

SF-CI
Γ ` g1 SF g2

Γ ` g1 CanInfl g2
EXTCI

Γ ` g1 CanInfl g2
Γ ` g1 · g′ CanInfl g2 · g′

TRANSCI
Γ ` g1 CanInfl g2 Γ ` g2 CanInfl g3

Γ ` g1 CanInfl g3

IMPCI
ϕ→ ψ @ g ∈ Γ g1 ∈ G(ϕ @ 〈〉) g2 ∈ G(ψ @ g)

Γ ` g1 CanInfl g2

Fig. 9. The rules defining the can influence relation.

System〈HInt〉. This influence is actually an endorsement from
LInt to HInt, and our speaks-for relation explicitly does not
capture such effects.

Prior work manages this trust-creating effect of implications
either by claiming security only when all implications are
provable [8] or by explicitly using assumed implications to
represent trust [26]. We hew closer to the latter model and
make the implicit trust of implications explicit in our statement
of non-interference. We therefore cannot use the speaks-for
relation, so we construct a new relation between generalized
principals we call can influence.

Intuitively, g1 can influence g2—which we denote
Γ ` g1 CanInfl g2—if either g1 speaks for g2 or there is an
implication in Γ that allows a belief of g1 to affect the
provability of a belief of g2. This relation, formally defined in
Figure 9, uses the G operator discussed above to capture the
generalized principals actually discussed by each subformula
of the implication. Because FLAFOL interprets the premise of
an implication as a condition whose modality is independent
of the entire belief, so too does the can-influence relation. The
relation is also transitive, allowing it to capture the fact that a
proof may require many steps to go from a belief at g1 to a
belief at g2.

Simply taking our attempted non-interference statement from
above and replacing speaks-for with can-influence allows us
to straightforwardly capture the effect of implications on trust
within the system.

While this change may appear small, it results in a highly con-
servative estimate of possible influence. Implications are precise
statements that can allow usually-disallowed information flows
under very particular circumstances. Unfortunately, because
our non-interference statement only considers the generalized
principals involved, not the entire beliefs, it cannot represent
the same level of precision. A single precise implication
added to a context can therefore relate whole classes of
previously-unrelated generalized principals, eliminating the
ability for non-interference to say anything about their relative
security. A similar lack of precision in information flow non-
interference statements has resulted in long lines of research
on how to precisely model or safely restrict declassification
and endorsement [27]–[36].

D. Discovering Trust with Disjunctions

The G operator and can-influence relation address dif-
ficulties from both says formulae and implications, but
our statement of non-interference still does not account for
the combination of disjunctions and the ability to discover
trust relationships. To understand the effect of these two
features in combination, recall the reinsurance example from
Section II-C. Bob can derive CanWrite(I1, `H) if he al-
ready believes both CanWrite(I1, `H) ∨ CanWrite(I2, `H)
and I2 says`H CanWrite(I1, `H).

We clearly cannot remove either of Bob’s beliefs and still
prove the result. Our desired theorem statement would thus
require that Bob〈`H〉 · I2〈`H〉 can influence Bob〈`H〉, which
there is no way to prove. The reason the sequent is still
provable, as we noted in Section II-C, is that Bob can discover
trust in I2 when he branches on an Or statement, which then
allows I2 to influence Bob. In this branch, we can prove
Bob〈`H〉 · I2〈`H〉 SF Bob〈`H〉 · Bob〈`H〉, which then speaks
for Bob〈`H〉.

To handle such assumptions, we cannot simply consider
the context in which we are proving a sequent; we must
consider any context that can appear in the proof of that
sequent. We developed the notion of compatible supercontexts
in Section V-B for exactly this purpose. Indeed, if we replace Γ
with an appropriate CSC when checking the potential influence
of generalized principals, we remove the last barrier to a true
non-interference theorem.

E. Formal Non-Interference

The techniques above allow us to modify our attempted
non-interference statement into a theorem that holds.

Theorem 5 (Non-Interference). For all contexts Γ and beliefs
ϕ @ g1 and ψ @ g2, if

Γ, ϕ @ g1 ` ψ @ g2,

then either (1) Γ ` ψ @ g2, or (2) there is some
∆� Γ, ϕ @ g1 ` ψ @ g2, g′1 ∈ G(ϕ @ g1), g′2 ∈ G(ψ @ g2),
and g′′1 such that ∆ ` g′1 · g′′1 CanInfl g′2.

The proof of this theorem follows by induction on the proof
of Γ, ϕ @ g1 ` ψ @ g2. For each proof rule, we argue that
either ϕ @ g1 is unnecessary for all premises or we can extend
an influence from one or more subproofs to an influence from
ϕ @ g1 to ψ @ g2.

This theorem limits when a belief ϕ @ g1 can be necessary
to prove ψ @ g2 in context Γ, much like other authorization
logic non-interference statements [8], [26]. As we mentioned
above, however, it is the first such non-interference statement
for any authorization logic supporting all first-order connectives
and discoverable trust. Moreover, it describes how FLAFOL
mitigates both:
• communication between principals, through CanRead

and CanWrite statements, and
• movement of information between security levels repre-

sented by information flow labels, via flows-to statements.

The CanInfl relation seems to make our non-interference
statement much less precise than we would like. After all,
implications precisely specify what beliefs can be declassified
or endorsed, whereas CanInfl conservatively assumes any
beliefs can move between the relevant generalized principals.
This lack of precision serves a purpose. It allows us to reason
about any implications, including those that arbitrarily change
principals and labels, something which other no authorization
logics have done before. It is therefore worth noting that, when
all of the implications in the context are provable, the theorem
holds even if you replace CanInfl with SF everywhere. The
same proof works, with some simple repair in the IMPL case.

Another complaint of imprecision applies to compatible
supercontexts. Specifically, if any principal assumes ϕ ∨ ¬ϕ
for any formula ϕ, then there is a CSC in which that principal
has assumed both, even though these are arrived at through
mutually-exclusive choices. Since CSCs have been added in
order to allow disjunctions and discoverable trust to co-exist, it
is good to know that if we disallow either, CSCs are not required
for non-interference. That is, if there are no disjunctions in the
context, then we can always instantiate the ∆ in Theorem 5
with Γ, ϕ @ g1. Similarly, if every permission that is provable
in any CSC of Γ, ϕ @ g1 ` ψ @ g2 is provable under Γ, ϕ @ g1,
then we can again always instantiate ∆ with Γ, ϕ @ g1.

Together, these points demonstrate that there are only two
types of poorly-behaved formulae that force the imprecision in
Theorem 5. This further shows that our non-interference result
is no less precise than those of other authorization logics in
the absence of such formulae. We add imprecision only when
needed to allow our statement to apply to more proofs.

To see how Theorem 5 corresponds to traditional non-
interference results for information flow, consider a setting
where every principal agrees on the same label ordering, and
where there are no implications corresponding to declassifica-
tions or endorsements. Then any two contexts Γ and Γ′ which
disagree only on beliefs labeled above some ` can prove exactly
the same things at label `—Γ ` ϕ @ g · p〈`〉 if and only if
Γ′ ` ϕ @ g · p〈`〉—since Theorem 5 allows us to delete all
of the beliefs on which they disagree. If we view contexts as
inputs, as in a propositions-as-types interpretation, then this
says that changing high inputs cannot change low results.

VII. RELATED WORK

Prior work in information flow and authorization logics has
explored the connection between the two. The Decentralized
Label Model [37], [38] includes a notion of ownership
in information flow policies specifying who may authorize
exceptions to the policy. The Flow-Limited Authorization
Model (FLAM) [2] was the first logic to directly consider the
effects of data confidentiality and integrity on trust relationships
between principals. Prior work on Rx [39] and RTI [40]
enforced language-based information flow policies via roles
whose membership were protected with confidentiality and
integrity labels. By contrast, FLAFOL is a formal authorization
logic containing every first-order connective.

Flow-Limited Authorization Model. The Flow-Limited Au-
thorization Model (FLAM) [2] was the first information-
flow label model to directly consider the interaction between
information flow and authorization. FLAM does not, however,
provide a full authorization logic. It lays out important rules for
reasoning about communication in systems with discoverable
trust relationships where principals may disagree on those
relationships. It also restricts participation in a proof using a
program counter label to help full systems remain secure in
contexts where merely checking a proof may leak data. FLAM,
however, provides no means to directly express authorization
policies other than one principal trusting another. It has no first-
order connectives or quantifiers and no way for one principal
to reason about another’s beliefs.

FLAM also represents principals directly as a combination
of confidentiality and integrity labels. This view restricts
FLAM from reasoning about labels with policies other than
confidentiality and integrity, since they might necessitate subtle
changes to FLAM’s reasoning rules. FLAFOL’s CanRead and
CanWrite relations abstract out how different label components
may interact, allowing each system to specify appropriate
restrictions given the meaning of its labels.

Unifying principals and labels also undermines FLAM’s
effectiveness as an authorization logic. It is often convenient
to construct complex policies from simpler ones, such as a
policy protecting Alice’s confidentiality and Bob’s integrity.
FLAM regards such a compound policy as a principal, breaking
the connection between formal principals and system entities.
While FLAFOL can certainly represent these policies, doing
so does not force a reasoner to break this connection.

FLAM additionally does not provide a non-interference guar-
antee, instead offering a guarantee called robust authorization.
In FLAM, each fact has a label representing its confidentiality
and integrity and is stored on a node, which is itself represented
by a label. If a node c believes a derived fact at label `, robust
authorization says:
• The label of every fact used in the derivation flows to `,
• Every node in the derivation may control whether the

derivation took place,
• c is allowed to learn every fact used in the derivation, and
• For each node n involved in the derivation, c will listen

to n at ` and n will talk to c at `.
FLAFOL’s non-interference theorem gives similar guarantees.

In particular, our non-interference theorem shows that the
label of every belief used in a derivation flows to that of the
derived belief, and makes a similar guarantee about trust among
principals. However, FLAFOL does not have any notion of
who may control whether a derivation takes place.

DCC and FLAC. The Dependency Core Calculus (DCC) [8],
[14] has been used to model both information flow control
and authorization, but not at the same time. DCC does provide
a non-interference property, but it employs a static external
lattice to express trust. The Flow-Limited Authorization Cal-
culus (FLAC) [3] uses ideas from both FLAM and DCC to
describe computations with discoverable trust, but it does not

reason about communication between principals. DFLATE [41]
extends FLAC with channels that support a limited form
of communication. Both FLAC and Polymorphic DCC [8]
are based on System F, which contains elements of second-
order logic by supporting universal quantification over types.
However, FLAFOL is built directly as a first-order logic and
so has more consistent logical guarantees, but does not yet
have an associated programming model.

Other Authorization Logics. Becker [42] explores prevent-
ing probing attacks, authorization queries which leak se-
cret information, in Datalog-based authorization logics like
DKAL [43] and SecPAL [5]. In SecPAL+ [1], Becker proposes
a new can listen to operator, similar to FLAFOL’s CanRead
permission, that expresses who is permitted to learn specific
statements. However, can listen to expresses permissions on
specific statements, not labels as CanRead does. Moreover,
FLAFOL tracks dependencies between statements using these
labels, so the security consequences of adding a new permission
are more explicit.

Garg and Pfenning [26] present an authorization logic and a
non-interference result that ensures untrusted principals cannot
influence the truth of statements made by other principals. Garg
and Pfenning, however, support a more limited set of logical
connectives than FLAFOL, use only implications to encode
trust, and do not reason directly about information flow.

Finally, AURA [12], [13] embeds DCC into a language
with dependent types to explore how authorization logic
interacts with programs. They inherit their non-interference
result directly from DCC, but they express first-order properties
by combining other programming language constructs with
DCC. This makes it unclear what guarantees the theorem
provides. Jia and Zdancewic encode information-flow labels
into AURA as principals and develop a non-interference theorem
in the style of information-flow systems [13]. This setup
unfortunately makes it impossible for principals to disagree
about the meaning of labels, since the labels themselves define
their properties.

VIII. CONCLUSION

We have introduced FLAFOL, a first-order logic which com-
bines notions of trust from both authorization and information
flow. It provides a concrete model of communication that
respects this combination and gives principals the ability to
reason about each other’s differing opinions, including differing
opinions about trust. FLAFOL has a powerful non-interference
theorem that navigates this complexity, a top-tier result for
authorization logics. It is, moreover, the most complete first-
order logic with such a guarantee.

ACKNOWLEDGMENTS

We would first like to thank our anonymous reviewers for
their insightful comments and helpful suggestions. Andrew
Myers and Jed Liu provided early feedback on the design of
FLAFOL. Discussion with Deepak Garg gave us insight into
how to introduce FLAFOL, while Phokion G. Kolatis pointed
us to some related work. We would finally like to thank Coşku

Acay, Arthur Azevedo de Amorim, Eric Campbell, Dietrich
Geisler, Elisavet Kozyri, Tom Magrino, Matthew Milano,
Andrew Morgan, and Drew Zagieboylo for their valuable help
editing this paper.

Funding for this work was provided by NSF grant #1704788,
NSF CAREER grant #1750060, and a National Defense Science
and Engineering Graduate Fellowship. Any opinions, findings,
conclusions, or recommendations expressed here are those of
the authors and may not reflect those of these sponsors.

REFERENCES

[1] M. Y. Becker, “Information flow in credential systems,” in 23rd IEEE
Symp. on Computer Security Foundations (CSF). IEEE, 2010, pp.
171–185.

[2] O. Arden, J. Liu, and A. C. Myers, “Flow-limited authorization,” in 28th

IEEE Symp. on Computer Security Foundations (CSF), Jul. 2015, pp.
569–583.

[3] O. Arden and A. C. Myers, “A calculus for flow-limited authorization,”
in 29th IEEE Symp. on Computer Security Foundations (CSF), Jun. 2016,
pp. 135–147.

[4] J. Howell and D. Kotz, “A formal semantics for SPKI,” in ESORICS 2000,
ser. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2000, vol. 1895, pp. 140–158.

[5] M. Y. Becker, C. Fournet, and A. D. Gordon, “SecPAL: Design and
semantics of a decentralized authorization language,” Journal of Computer
Security, vol. 18, no. 4, pp. 619–665, 2010.

[6] F. B. Schneider, K. Walsh, and E. G. Sirer, “Nexus Authorization Logic
(NAL): Design rationale and applications,” ACM Trans. Inf. Syst. Secur.,
vol. 14, no. 1, pp. 8:1–8:28, Jun. 2011.

[7] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication
in distributed systems: Theory and practice,” in 13th ACM Symp. on
Operating System Principles (SOSP), Oct. 1991, pp. 165–182.

[8] M. Abadi, “Access control in a core calculus of dependency,” in 11th

ACM SIGPLAN Int’l Conf. on Functional Programming. New York,
NY, USA: ACM, 2006, pp. 263–273.

[9] E. G. Sirer, W. D. Bruijin, P. Reynolds, A. Shieh, K. Walsh, D. Williams,
and F. B. Schneider, “Logical attestation: An authorization architecture
for trustworthy computing,” in 11th ACM Symp. on Operating System
Principles (SOSP), 2011.

[10] Coq development team, The Coq proof assistant reference manual,
LogiCal Project, 2004, version 8.0. [Online]. Available: http://coq.inria.fr

[11] A. K. Hirsch, P. de Amorim, E. Cecchetti, O. Arden, and R. Tate,
“First-order logic for flow-limited authorization: Technical report,” Max
Planck Institute for Software Systems, Tech. Rep., 2020. [Online].
Available: https://arxiv.org/abs/2001.10630

[12] L. Jia, J. A. Vaughan, K. Mazurak, J. Zhao, L. Zarko, J. Schorr, and
S. Zdancewic, “AURA: A programming language for authorization and
audit,” in 13th ACM SIGPLAN Int’l Conf. on Functional Programming,
Sep. 2008.

[13] L. Jia and S. Zdancewic, “Encoding information flow in AURA,” PLAS,
pp. 17–29, June 2009.

[14] M. Abadi, A. Banerjee, N. Heintze, and J. Riecke, “A core calculus
of dependency,” in 26th ACM Symp. on Principles of Programming
Languages (POPL), Jan. 1999, pp. 147–160.

[15] M. P. Milano and A. C. Myers, “MixT: A language for mixing
consistency in geodistributed transactions,” in 39th ACM SIGPLAN
Conf. on Programming Language Design and Implementation (PLDI),
Jun. 2018.

[16] L. Zheng and A. C. Myers, “End-to-end availability policies and
noninterference,” in 18th IEEE Computer Security Foundations Workshop
(CSFW), Jun. 2005, pp. 272–286.

[17] V. Rajani, D. Garg, and T. Rezk, “On access control, capabilities, their
equivalence, and confused deputy attacks,” CSF, June 2016.

[18] E. Z. Yang, “Logitext,” 2012, accessed February 19, 2019. [Online].
Available: http://logitext.mit.edu/main

[19] D. Volpano, G. Smith, and C. Irvine, “A sound type system for secure
flow analysis,” Journal of Computer Security, vol. 4, no. 3, pp. 167–187,
1996.

[20] M. Algehed, “Short paper: A perspective on the dependency core calculus,”
PLAS, October 2018.

[21] G. Takeuti, Proof Theory, ser. Dover Books on Mathematics. Dover
Books, 1987, Second Edition, republished by Dover Books in 2013.
Originally published by North-Holland, Amsterdam.

[22] J.-Y. Girard, Y. Lafont, and P. Taylor, Proofs and Types, ser. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press,
1989.

[23] F. Pfenning, “Structural cut elimination,” LICS, pp. 156–166, June 1995.
[24] D. E. Denning, “A lattice model of secure information flow,” Comm. of

the ACM, vol. 19, no. 5, pp. 236–243, 1976.
[25] J. A. Goguen and J. Meseguer, “Security policies and security models,”

in IEEE Symp. on Security and Privacy, Apr. 1982, pp. 11–20.
[26] D. Garg and F. Pfenning, “Non-interference in constructive authorization

logic,” in 19th IEEE Computer Security Foundations Workshop (CSFW).
New Jersey, USA: IEEE, 2006.

[27] S. Zdancewic and A. C. Myers, “Robust declassification,” in 14th IEEE
Computer Security Foundations Workshop (CSFW), Jun. 2001, pp. 15–23.

[28] A. Sabelfeld and A. C. Myers, “A model for delimited release,” in 2003
International Symposium on Software Security, ser. Lecture Notes in
Computer Science, no. 3233. Springer-Verlag, 2004, pp. 174–191.

[29] H. Mantel and D. Sands, “Controlled Declassification based on Intran-
sitive Noninterference,” in 2nd ASIAN Symposium on Programming
Languages and Systems, APLAS 2004, ser. LNCS 3303. Taipei, Taiwan:
Springer-Verlag, Nov. 2004, pp. 129–145.

[30] P. Li and S. Zdancewic, “Downgrading policies and relaxed noninterfer-
ence,” in 32nd ACM Symp. on Principles of Programming Languages
(POPL), Long Beach, CA, Jan. 2005.

[31] A. Sabelfeld and D. Sands, “Dimensions and principles of declassifica-
tion,” in 18th IEEE Computer Security Foundations Workshop (CSFW),
Jun. 2005, pp. 255–269.

[32] A. C. Myers, A. Sabelfeld, and S. Zdancewic, “Enforcing robust
declassification and qualified robustness,” Journal of Computer Security,
vol. 14, no. 2, pp. 157–196, 2006.

[33] S. Chong and A. C. Myers, “End-to-end enforcement of erasure and
declassification,” in IEEE Symp. on Computer Security Foundations
(CSF), Jun. 2008, pp. 98–111.

[34] A. Askarov and A. C. Myers, “Attacker control and impact for
confidentiality and integrity,” Logical Methods in Computer Science,
vol. 7, no. 3, Sep. 2011.

[35] L. Waye, P. Buiras, D. King, S. Chong, and A. Russo, “It’s my privilege:
Controlling downgrading in DC-labels,” in Proceedings of the 11th
International Workshop on Security and Trust Management, Sep. 2015.

[36] E. Cecchetti, A. C. Myers, and O. Arden, “Nonmalleable information
flow control,” in 24th ACM Conf. on Computer and Communications
Security (CCS), Oct. 2017, pp. 1875–1891.

[37] A. C. Myers and B. Liskov, “Complete, safe information flow with
decentralized labels,” in IEEE Symp. on Security and Privacy, May 1998,
pp. 186–197.

[38] ——, “Protecting privacy using the decentralized label model,” ACM
Transactions on Software Engineering and Methodology, vol. 9, no. 4,
pp. 410–442, Oct. 2000.

[39] N. Swamy, M. Hicks, S. Tse, and S. Zdancewic, “Managing policy
updates in security-typed languages,” in 19th IEEE Computer Security
Foundations Workshop (CSFW), Jul. 2006, pp. 202–216.

[40] S. Bandhakavi, W. Winsborough, and M. Winslett, “A trust management
approach for flexible policy management in security-typed languages,”
in Computer Security Foundations Symposium, 2008, 2008, pp. 33–47.

[41] A. Gollamudi, S. Chong, and O. Arden, “Information flow control for
distributed trusted execution environments,” in 32nd IEEE Symp. on
Computer Security Foundations (CSF), 2019.

[42] M. Y. Becker, “Information flow in trust management systems,” Journal
of Computer Security, vol. 20, no. 6, pp. 677–708, 2012.

[43] Y. Gurevich and I. Neeman, “DKAL: Distributed-knowledge authorization
language,” in IEEE Symp. on Computer Security Foundations (CSF).
IEEE, 2008, pp. 149–162.

APPENDIX A
THE FULL FLAFOL PROOF SYSTEM

The full FLAFOL proof system can be found in Figure 10.

APPENDIX B
COMPATIBLE SUPERCONTEXTS

Figure 11 contains the full compatible super-contexts rules.

http://coq.inria.fr
https://arxiv.org/abs/2001.10630
http://logitext.mit.edu/main

AX
Γ, ϕ @ g ` ϕ @ g

WEAKENING
Γ ` ψ @ g

Γ, ϕ @ g′ ` ψ @ g

CONTRACTION
Γ, (ϕ @ g), (ϕ @ g) ` ψ @ g′

Γ, ϕ @ g ` ψ @ g′
EXCHANGE

Γ, (ϕ @ g1), (ψ @ g2),Γ′ ` χ @ g

Γ, (ψ @ g2), (ϕ @ g1),Γ′ ` χ @ g

FALSEL
Γ,False @ g ` ϕ @ g · g′

TRUER
Γ ` True @ g

ANDL
Γ, (ϕ @ g), (ψ @ g) ` χ @ g′

Γ, (ϕ ∧ ψ @ g) ` χ @ g′
ANDR

Γ ` ϕ @ g Γ ` ψ @ g

Γ ` ϕ ∧ ψ @ g

ORL
Γ, ϕ @ g ` χ @ g′ Γ, ψ @ g ` χ @ g′

Γ, (ϕ ∨ ψ @ g) ` χ @ g′
ORR1

Γ ` ϕ @ g

Γ ` ϕ ∨ ψ @ g
ORR2

Γ ` ψ @ g

Γ ` ϕ ∨ ψ @ g

IMPL
Γ ` ϕ @ 〈〉 Γ, ψ @ g ` χ @ g′

Γ, (ϕ→ ψ @ g) ` χ @ g′
IMPR

Γ, ϕ @ 〈〉 ` ψ @ g

Γ ` ϕ→ ψ @ g

FORALLL
Γ, ϕ[x 7→ t] @ g ` ψ @ g′

Γ, (∀x :σ. ϕ @ g) ` ψ @ g′
FORALLR

Γ ` ϕ @ g x /∈ FV(Γ, g)

Γ ` ∀x :σ. ϕ @ g

EXISTSL
Γ, ϕ @ g ` ψ @ g′ x /∈ FV(Γ, ψ, g, g′)

Γ, (∃x :σ. ϕ @ g) ` ψ @ g′
EXISTSR

Γ ` ϕ[x 7→ t] @ g

Γ ` ∃x :σ. ψ @ g

SAYSL
Γ, ϕ @ g · p〈`〉 ` ψ @ g′

Γ, p says` ϕ @ g ` ψ @ g′
SAYSR

Γ ` ϕ @ g · p〈`〉
Γ ` p says` ϕ @ g

SELFL
Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

Γ, (ϕ @ g · p〈`〉 · p〈`〉 · g′) ` ψ @ g′′
================================= SELFR

Γ ` ϕ @ g · p〈`〉 · g′

Γ ` ϕ @ g · p〈`〉 · p〈`〉 · g′
=======================

VARL

Γ, (ϕ @ g · p〈`′〉 · g′) ` ψ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` ` v `′ @ g · p〈`′〉
Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

VARR
Γ ` ϕ @ g · p〈`′〉 · g′ Γ ` `′ v ` @ g · p〈`〉

Γ ` ϕ @ g · p〈`〉 · g′

FWDL

Γ, (ϕ @ g · q〈`〉 · g′) ` χ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` CanRead(q, `) @ g · p〈`〉
Γ, (ϕ @ g · p〈`〉 · g′) ` CanWrite(p, `) @ g · q〈`〉

Γ, ϕ @ g · p〈`〉 · g′ ` χ @ g′′
FWDR

Γ ` ϕ @ g · p〈`〉 · g′
Γ ` CanRead(q, `) @ g · p〈`〉
Γ ` CanWrite(p, `) @ g · q〈`〉

Γ ` ϕ @ g · q〈`〉 · g′

FLOWSTOREFL
Γ ` ` v ` @ g

FLOWSTOTRANS
Γ ` `1 v `2 @ g Γ ` `2 v `3 @ g

Γ ` `1 v `3 @ g

CRVAR
Γ ` CanRead(p, `2) @ g Γ ` `1 v `2 @ g

Γ ` CanRead(p, `1) @ g
CWVAR

Γ ` CanWrite(p, `2) @ g Γ ` `2 v `1 @ g

Γ ` CanWrite(p, `1) @ g

Fig. 10. Full FLAFOL Proof System

CSCREFL
Γ� Γ ` ϕ @ g

CSCUNION
∆1 � Γ ` ϕ @ g ∆2 � Γ ` ϕ @ g

∆1 ∪∆2 � Γ ` ϕ @ g

CSCCONTRACTION
∆� Γ, (ϕ @ g), (ϕ @ g) ` ψ @ g′

∆� Γ, ϕ @ g ` ψ @ g′
CSCEXCHANGE

∆� Γ, (ϕ @ g1), (ψ @ g2),Γ′ ` χ @ g

∆� Γ, (ψ @ g2), (ϕ @ g1),Γ′ ` χ @ g

CSCANDL
∆� Γ, (ϕ @ g), (ψ @ g) ` χ @ g′

∆� Γ, (ϕ ∧ ψ @ g) ` χ @ g′
CSCANDR1

∆� Γ ` ϕ @ g

∆� Γ ` ϕ ∧ ψ @ g
CSCANDR2

∆� Γ ` ψ @ g

∆� Γ ` ϕ ∧ ψ @ g

CSCORL1
∆� Γ, ϕ @ g ` χ @ g′

∆� Γ, (ϕ ∨ ψ @ g) ` χ @ g′
CSCORL2

∆� Γ, ψ @ g ` χ @ g′

∆� Γ, (ϕ ∨ ψ @ g) ` χ @ g′

CSCORR1
∆� Γ ` ϕ @ g

∆� Γ ` ϕ ∨ ψ @ g
CSCORR2

∆� Γ ` ψ @ g

∆� Γ ` ϕ ∨ ψ @ g
CSCIMPL1

∆� Γ, ψ @ g ` χ @ g′

∆� Γ, (ϕ→ ψ @ g) ` χ @ g′

CSCIMPL2
∆� Γ ` ϕ @ 〈〉

∆� Γ, (ϕ→ ψ @ g) ` χ @ g′
CSCIMPR

∆� Γ, ϕ @ 〈〉 ` ψ @ g

∆� Γ ` ϕ→ ψ @ g

CSCFORALLL
∆� Γ, ϕ[x 7→ t] @ g ` ψ @ g′

∆� Γ, (∀x :σ. ϕ @ g) ` ψ @ g′
CSCFORALLR

∆� Γ ` ϕ @ g x /∈ FV(Γ, g)

∆� Γ ` ∀x :σ. ϕ @ g

CSCEXISTSL
∆� Γ, ϕ @ g ` ψ @ g′ x /∈ FV(Γ, ψ, g, g′)

∆� Γ, (∃x :σ. ϕ @ g) ` ψ @ g′
CSCEXISTSR

∆� Γ ` ϕ[x 7→ t] @ g

∆� Γ ` ∃x :σ. ϕ @ g

CSCSAYSL
∆� Γ, ϕ @ g · p〈`〉 ` ψ @ g′

∆� Γ, p says` ϕ @ g ` ψ @ g′
CSCSAYSR

∆� Γ ` ϕ @ g · p〈`〉
∆� Γ ` p says` ϕ @ g

CSCSELFL
∆� Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

∆� Γ, (ϕ @ g · p〈`〉 · p〈`〉 · g′) ` ψ @ g′′
====================================== CSCSELFR

∆� Γ ` ϕ @ g · p〈`〉 · g′

∆� Γ ` ϕ @ g · p〈`〉 · p〈`〉 · g′
=============================

CSCVARL
∆� Γ, (ϕ @ g · p〈`′〉 · g′) ` ψ @ g′′ Γ, (ϕ @ g · p〈`〉 · g′) ` ` v `′ @ g · p〈`′〉

∆� Γ, (ϕ @ g · p〈`〉 · g′) ` ψ @ g′′

CSCVARR
∆� Γ ` ϕ @ g · p〈`′〉 · g′ Γ ` `′ v ` @ g · p〈`〉

∆� Γ ` ϕ @ g · p〈`〉 · g′

CSCFWDL

∆� Γ, (ϕ @ g · q〈`〉 · g′) ` χ @ g′′

Γ, (ϕ @ g · p〈`〉 · g′) ` CanRead(q, `) @ g · p〈`〉 Γ, (ϕ @ g · p〈`〉 · g′) ` CanWrite(p, `) @ g · q〈`〉
∆� Γ, ϕ @ g · p〈`〉 · g′ ` χ @ g′′

CSCFWDR
∆� Γ ` ϕ @ g · p〈`〉 · g′ Γ ` CanRead(q, `) @ g · p〈`〉 Γ ` CanWrite(p, `) @ g · q〈`〉

∆� Γ ` ϕ @ g · q〈`〉 · g′

Fig. 11. Compatible Supercontext Rules

	Introduction
	FLAFOL By Example
	Viewing Pictures on Social Media
	Integrity Tracking to Prevent SQL Injection
	Hospital Bills Calculation and Reinsurance
	Further Adapting FLAFOL

	Using FLAFOL
	Proof System
	Proof Theory
	Consistency
	Compatible Supercontexts
	Cut Elimination
	Implications and Communication

	Non-Interference
	Trust in FLAFOL
	Says Statements and Non-Interference
	Implications
	Discovering Trust with Disjunctions
	Formal Non-Interference

	Related Work
	Conclusion
	References
	Appendix A: The Full FLAFOL Proof System
	Appendix B: Compatible Supercontexts

